IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Maximum Transmitter Power set by Fiber Nonlinearity-Induced Bit Error Rate Floors in Non-Repeatered Coherent DWDM Systems
Xin ZhangYasuhiro Aoki
著者情報
ジャーナル 認証あり 早期公開

論文ID: 2018EBP3259

この記事には本公開記事があります。
詳細
抄録

We have comprehensively studied by numerical simulation high power transmission properties through single mode fiber for non-repeatered system application. We have clearly captured bit error rates (BERs) of digital coherent signal exhibit specific floor levels, depending on transmitter powers, due to fiber nonlinearity. If the maximum transmitter powers are defined as the powers at which BER floor levels are 1.0×10-2 without error correction, those are found to be approximately +20.4 dBm, +14.8 dBm and +10.6 dBm, respectively, for single-channel 120Gbps DP-QPSK, DP-16QAM and DP-64QAM formats in large-core and low-loss single-mode silica fibers. In the simulations, we set fiber lengths over 100km, which is much longer than the effective fiber length, thus the results are applicable to any of long-length non-repeatered systems. We also show that the maximum transmitter powers gradually decrease in logarithmic feature with the increase of the number of DWDM channels. The channel number dependence is newly shown to be almost independent on the modulation format. The simulated results have been compared with extended Gaussian-Noise (GN) model with introducing adjustment parameters, not only to confirm the validity of the results but to explore possible new analytical modeling for non-repeatered systems.

著者関連情報
© 2018 The Institute of Electronics, Information and Communication Engineers
feedback
Top