IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Theoretical Analyses of Maximum Cyclic Autocorrelation Selection Based Spectrum Sensing
Shusuke NARIEDADaiki CHOHiromichi OGASAWARAKenta UMEBAYASHITakeo FUJIIHiroshi NARUSE
著者情報
ジャーナル 認証あり 早期公開

論文ID: 2019EBP3175

この記事には本公開記事があります。
詳細
抄録

This paper provides theoretical analyses for maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing techniques in cognitive radio networks. The MCAS-based spectrum sensing techniques are low computational complexity spectrum sensing in comparison with some cyclostationary detection. However, MCAS-based spectrum sensing characteristics have never been theoretically derived. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the values match well with each other.

著者関連情報
© 2020 The Institute of Electronics, Information and Communication Engineers
feedback
Top