IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Optimization of Deterministic Pilot Pattern Placement Based on Quantum Genetic Algorithm for Sparse Channel Estimation in OFDM Systems
Yang NieXinle Yu
著者情報
ジャーナル 認証あり 早期公開

論文ID: 2019EBP3200

この記事には本公開記事があります。
詳細
抄録

This paper proposes a deterministic pilot pattern placement optimization scheme based on the quantum genetic algorithm (QGA) which aims to improve the performance of sparse channel estimation in orthogonal frequency division multiplexing (OFDM) systems. By minimizing the mutual incoherence property (MIP) of the sensing matrix, the pilot pattern placement optimization is modeled as the solution of a combinatorial optimization problem. QGA is used to solve the optimization problem and generate optimized pilot pattern that can effectively avoid local optima traps. The simulation results demonstrate that the proposed method can generate a sensing matrix with a smaller MIP than a random search or the genetic algorithm (GA), and the optimized pilot pattern performs well for sparse channel estimation in OFDM systems.

著者関連情報
© 2020 The Institute of Electronics, Information and Communication Engineers
feedback
Top