IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Regular Section
Further Results on the Minimum and Stopping Distances of Full-Length RS-LDPC Codes
Haiyang LIUHao ZHANGLianrong MA
著者情報
ジャーナル 認証あり

2017 年 E100.A 巻 2 号 p. 738-742

詳細
抄録

Based on the codewords of the [q,2,q-1] extended Reed-Solomon (RS) code over the finite field Fq, we can construct a regular binary γq×q2 matrix H(γ,q), where q is a power of 2 and γ≤q. The matrix H(γ,q) defines a regular low-density parity-check (LDPC) code C(γ,q), called a full-length RS-LDPC code. Using some analytical methods, we completely determine the values of s(H(4,q)), s(H(5,q)), and d(C(5,q)) in this letter, where s(H(γ,q)) and d(C(γ,q)) are the stopping distance of H(γ,q) and the minimum distance of C(γ,q), respectively.

著者関連情報
© 2017 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top