IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Information Theory and Its Applications
Construction of Locally Repairable Codes with Multiple Localities Based on Encoding Polynomial
Tomoya HAMADAHideki YAGI
著者情報
ジャーナル 認証あり

2018 年 E101.A 巻 12 号 p. 2047-2054

詳細
抄録

Locally repairable codes, which can repair erased symbols from other symbols, have attracted a good deal of attention in recent years because its local repair property is effective on distributed storage systems. (ru, δu)u∈[s]-locally repairable codes with multiple localities, which are an extension of ordinary locally repairable codes, can repair δu-1 erased symbols simultaneously from a set consisting of at most ru symbols. An upper bound on the minimum distance of these codes and a construction method of optimal codes, attaining this bound with equality, were given by Chen, Hao, and Xia. In this paper, we discuss the parameter restrictions of the existing construction, and we propose explicit constructions of optimal codes with multiple localities with relaxed restrictions based on the encoding polynomial introduced by Tamo and Barg. The proposed construction can design a code whose minimum distance is unrealizable by the existing construction.

著者関連情報
© 2018 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top