IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Smart Multimedia & Communication Systems
Sparse Time-Varying Complex AR (TV-CAR) Speech Analysis Based on Adaptive LASSO
Keiichi FUNAKI
著者情報
ジャーナル 認証あり

2019 年 E102.A 巻 12 号 p. 1910-1914

詳細
抄録

Linear Prediction (LP) analysis is commonly used in speech processing. LP is based on Auto-Regressive (AR) model and it estimates the AR model parameter from signals with l2-norm optimization. Recently, sparse estimation is paid attention since it can extract significant features from big data. The sparse estimation is realized by l1 or l0-norm optimization or regularization. Sparse LP analysis methods based on l1-norm optimization have been proposed. Since excitation of speech is not white Gaussian, a sparse LP estimation can estimate more accurate parameter than the conventional l2-norm based LP. These are time-invariant and real-valued analysis. We have been studied Time-Varying Complex AR (TV-CAR) analysis for an analytic signal and have evaluated the performance on speech processing. The TV-CAR methods are l2-norm methods. In this paper, we propose the sparse TV-CAR analysis based on adaptive LASSO (Least absolute shrinkage and selection operator) that is l1-norm regularization and evaluate the performance on F0 estimation of speech using IRAPT (Instantaneous RAPT). The experimental results show that the sparse TV-CAR methods perform better for a high level of additive Pink noise.

著者関連情報
© 2019 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top