IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Regular Section
Sea Clutter Image Segmentation Method of High Frequency Surface Wave Radar Based on the Improved Deeplab Network
Haotian CHENSukhoon LEEDi YAODongwon JEONG
著者情報
ジャーナル 認証あり

2022 年 E105.A 巻 4 号 p. 730-733

詳細
抄録

High Frequency Surface Wave Radar (HFSWR) can achieve over-the-horizon detection, which can effectively detect and track the ships and ultra-low altitude aircrafts, as well as the acquisition of sea state information such as icebergs and ocean currents and so on. However, HFSWR is seriously affected by the clutters, especially sea clutter and ionospheric clutter. In this paper, we propose a deep learning image semantic segmentation method based on optimized Deeplabv3+ network to achieve the automatic detection of sea clutter and ionospheric clutter using the measured R-D spectrum images of HFSWR during the typhoon as experimental data, which avoids the disadvantage of traditional detection methods that require a large amount of a priori knowledge and provides a basis for subsequent the clutter suppression or the clutter characteristics research.

著者関連情報
© 2022 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top