IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Regular Section
Novel SLM Scheme with Low-Complexity for PAPR Reduction in OFDM System
Chua-Yun HSUHsin-Chieh CHAO
著者情報
ジャーナル 認証あり

2008 年 E91.A 巻 7 号 p. 1689-1696

詳細
抄録
Orthogonal frequency-division multiplexing (OFDM) is an attractive transmission technique for high-bit-rate communication systems. One major drawback of OFDM is the high peak-to-average power ratio (PAPR) of the transmitted signal. This study introduces a low-complexity selected mapping (SLM) OFDM scheme based on discrete Fourier transform (DFT) constellation-shaping. The DFT-based constellation-shaping algorithm applied with conventional SLM scheme usually requires a bank of DFT-shaping matrices to generate low-correlation constellation sequences and a bank of inverse fast Fourier transforms (IFFTs) to generate a set of candidate transmission signals, and this process usually results in high computational complexity. Therefore, a sparse matrix algorithm with low-complexity is proposed to replace the IFFT blocks and the DFT-shaping blocks in the proposed DFT constellation-shaping SLM scheme. By using the proposed sparse matrix, the candidate transmission signal with the lowest PAPR can be achieved with lower complexity than that of the conventional SLM scheme. The complexity analysis of the proposed algorithm shows great an improvement in the reduction of the number of multiplications. Moreover, this new low-complexity technique offers a PAPR that is significantly lower than that of the conventional SLM without any loss in terms of energy and spectral efficiency.
著者関連情報
© 2008 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top