IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Regular Section
Cross-Correlation between a p-Ary m-Sequence and Its All Decimated Sequences for $d=\frac{(p^{m}+1)(p^{m}+p-1)}{p+1}$
Yongbo XIAShaoping CHENTor HELLESETHChunlei LI
著者情報
ジャーナル 認証あり

2014 年 E97.A 巻 4 号 p. 964-969

詳細
抄録
Let m ≥ 3 be an odd positive integer, n=2m and p be an odd prime. For the decimation factor $d=\frac{(p^{m}+1)(p^{m}+p-1)}{p+1}$, the cross-correlation between the p-ary m-sequence {tr1nt)} and its all decimated sequences {tr1ndt+l)} is investigated, where 0 ≤ l < gcd(d,pn-1) and α is a primitive element of Fpn. It is shown that the cross-correlation function takes values in {-1,-1±ipm|i=1,2,…p}. The result presented in this paper settles a conjecture proposed by Kim et al. in the 2012 IEEE International Symposium on Information Theory Proceedings paper (pp.1014-1018), and also improves their result.
著者関連情報
© 2014 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top