IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Regular Section
Skew Cyclic Codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}$
Minjia SHITing YAOAdel ALAHMADIPatrick SOLÉ
著者情報
ジャーナル 認証あり

2015 年 E98.A 巻 8 号 p. 1845-1848

詳細
抄録
In this article, we study skew cyclic codes over $R=\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}$, where $q=p^{m}$, $p$ is an odd prime and v3=v. We describe the generator polynomials of skew cyclic codes over this ring and investigate the structural properties of skew cyclic codes over R by a decomposition theorem. We also describe the generator polynomial of the dual of a skew cyclic code over R. Moreover, the idempotent generators of skew cyclic codes over $\mathbb{F}_{q}$ and R are considered.
著者関連情報
© 2015 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top