2016 年 E99.A 巻 10 号 p. 1799-1805
A novel virtual sensors-based positioning method has been presented in this paper, which can make use of both direct paths and indirect paths. By integrating the virtual sensor idea and Bayesian state and observation framework, this method models the indirect paths corresponding to persistent virtual sensors as virtual direct paths and further reformulates the wireless positioning problem as the maximum likelihood estimation of both the mobile terminal's positions and the persistent virtual sensors' positions. Then the method adopts the EM (Expectation Maximization) and the particle filtering schemes to estimate the virtual sensors' positions and finally exploits not only the direct paths' measurements but also the indirect paths' measurements to realize the mobile terminal's positions estimation, thus achieving better positioning performance. Simulation results demonstrate the effectiveness of the proposed method.