IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Unsupervised Deep Embedded Hashing for Large-scale Image Retrieval
Huanmin WANG
著者情報
ジャーナル 認証あり 早期公開

論文ID: 2020EAL2056

この記事には本公開記事があります。
詳細
抄録

Hashing methods have proven to be effective algorithm for image retrieval. However, learning discriminative hash codes is challenging for unsupervised models. In this paper, we propose a novel distinguishable image retrieval framework, named Unsupervised Deep Embedded Hashing (UDEH), to recursively learn discriminative clustering through soft clustering models and generate highly similar binary codes. We reduce the data dimension by auto-encoder and apply binary constraint loss to reduce quantization error. UDEH can be jointly optimized by standard stochastic gradient descent (SGD) in the embedd layer. We conducted a comprehensive experiment on two popular datasets.

著者関連情報
© 2020 The Institute of Electronics, Information and Communication Engineers
feedback
Top