IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Encrypted Traffic Categorization based on Flow Byte Sequence Convolution Aggregation Network
Lin YANMingyong ZENGShuai RENZhangkai LUO
著者情報
ジャーナル 認証あり 早期公開

論文ID: 2020EAL2102

この記事には本公開記事があります。
詳細
抄録

Traffic categorization aims to classify network traffic into major service types. A modern deep neural network based on temporal sequence modeling is proposed for encrypted traffic categorization. The contemporary techniques such as dilated convolution and residual connection are adopted as the basic building block. The raw traffic files are pre-processed to generate 1-dimensional ow byte sequences and are feed into our specially-devised network. The proposed approach outperforms other existing methods greatly on a public traffic dataset.

著者関連情報
© 2020 The Institute of Electronics, Information and Communication Engineers
feedback
Top