IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Face Super-Resolution via Hierarchical Multi-Scale Residual Fusion Network
Yu WANGTao LUZhihao WUYuntao WUYanduo ZHANG
著者情報
ジャーナル 認証あり 早期公開

論文ID: 2020EAL2103

この記事には本公開記事があります。
詳細
抄録

Exploring the structural information as prior to facial images is a key issue of face super-resolution (SR). Although deep convolutional neural networks (CNNs) own powerful representation ability, how to accurately use facial structural information remains challenges. In this paper, we proposed a new residual fusion network to utilize the multi-scale structural information for face SR. Different from the existing methods of increasing network depth, the bottleneck attention module is introduced to extract fine facial structural features by exploring correlation from feature maps. Finally, hierarchical scales of structural information is fused for generating a high-resolution (HR) facial image. Experimental results show the proposed network outperforms some existing state-of-the-art CNNs based face SR algorithms.

著者関連情報
© 2021 The Institute of Electronics, Information and Communication Engineers
feedback
Top