IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Concatenated Permutation Codes under Chebyshev Distance
Motohiko KAWASUMIKenta KASAI
著者情報
ジャーナル フリー 早期公開

論文ID: 2022EAP1058

この記事には本公開記事があります。
詳細
抄録

Permutation codes are error-correcting codes over symmetric groups. We focus on permutation codes under Chebyshev () distance. A permutation code invented by Kløve et al. is of length n, size 2n-d and, minimum distance d. We denote the code by ϕn,d. This code is the largest known code of length n and minimum Chebyshev distance d > n/2 so far, to the best of the authors knowledge. They also devised efficient encoding and hard-decision decoding (HDD) algorithms that outperform the bounded distance decoding.

In this paper, we derive a tight upper bound of decoding error probability of HDD. By factor graph formalization, we derive an efficient maximum a-posterior probability decoding algorithm for ϕn,d. We explore concatenating permutation codes of ϕn,d=0 with binary outer codes for more robust error correction. A naturally induced pseudo distance over binary outer codes successfully characterizes Chebyshev distance of concatenated permutation codes. Using this distance, we upper-bound the minimum Chebyshev distance of concatenated codes. We discover how to concatenate binary linear codes to achieve the upper bound. We derive the distance distribution of concatenated permutation codes with random outer codes. We demonstrate that the sum-product decoding performance of concatenated codes with outer low-density parity-check codes outperforms conventional schemes.

著者関連情報
© 2022 The Institute of Electronics, Information and Communication Engineers
feedback
Top