IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

A novel discriminative dictionary learning method for image classification
Wentao LYUDi ZHOUChengqun WANGLu ZHANG
著者情報
ジャーナル フリー 早期公開

論文ID: 2022EAP1149

この記事には本公開記事があります。
詳細
抄録

In this paper, we present a novel discriminative dictionary learning (DDL) method for image classification. The local structural relationship between samples is first built by the Laplacian eigenmaps (LE), and then integrated into the basic DDL frame to suppress inter-class ambiguity in the feature space. Moreover, in order to improve the discriminative ability of the dictionary, the category label information of training samples is formulated into the objective function of dictionary learning by considering the discriminative promotion term. Thus, the data points of original samples are transformed into a new feature space, in which the points from different categories are expected to be far apart. The test results based on the real dataset indicate the effectiveness of this method.

著者関連情報
© 2022 The Institute of Electronics, Information and Communication Engineers
feedback
Top