IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Distributed Event-Triggered Stochastic Gradient-Tracking for Nonconvex Optimization
Daichi ISHIKAWANaoki HAYASHIShigemasa TAKAI
著者情報
ジャーナル フリー 早期公開

論文ID: 2023MAP0002

この記事には本公開記事があります。
詳細
抄録

In this paper, we consider a distributed stochastic nonconvex optimization problem for multiagent systems. We propose a distributed stochastic gradient-tracking method with event-triggered communication. A group of agents cooperatively finds a critical point of the sum of local cost functions, which are smooth but not necessarily convex. We show that the proposed algorithm achieves a sublinear convergence rate by appropriately tuning the step size and the trigger threshold. Moreover, we show that agents can effectively solve a nonconvex optimization problem by the proposed event-triggered algorithm with less communication than by the existing time-triggered gradient-tracking algorithm. We confirm the validity of the proposed method by numerical experiments.

著者関連情報
© 2024 The Institute of Electronics, Information and Communication Engineers
feedback
Top