IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Automatic classification of human chromosome shapes using convolutional neural network models
Shinya MatsumotoDaiki IkemotoTakuya AbeKan OkuboKiyoshi Nishikawa
著者情報
ジャーナル フリー 早期公開

論文ID: 2024EAL2053

この記事には本公開記事があります。
詳細
抄録

Metaphase chromosome classifications based on the positional relationship between sister chromatids are used to evaluate the function of the cohesin complex, which tethers sister chromatids until cell division. Currently, classification is manually performed by researchers, which is time consuming and biased. This study aims to automate the analysis using multiple convolutional neural network (CNN)-trained models. By improving our prototype model with a 73.1% concordance rate, one of the proposed new models achieved a maximum concordance rate of 93.33% after applying a fine-tuning method and ensemble learning method. The results suggest that CNN-based models can automatically classify chromosome shapes.

著者関連情報
© 2025 The Institute of Electronics, Information and Communication Engineers
feedback
Top