IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Detecting Defect Copper Parts Based on Machine Vision
Zhenhai TANYun YANGXiaoman WANGFayez ALQAHTANI
著者情報
ジャーナル フリー 早期公開

論文ID: 2024EAP1109

この記事には本公開記事があります。
詳細
抄録

The quality detection of copper alloys plays a crucial role in enhancing the factory's economic and production efficiency, particularly in addressing surface defects and ensuring component size and specification accuracy. This paper proposes a deep learning-based quality detection method for detecting the defect on the surfaces of copper alloy components, encompassing both surface defect detection and external dimensional quality assessment. For defect detection, the method achieves an accuracy of 94% with an average detection time of 29ms. In dimensional quality detection, the accuracy reaches 96%, with an average detection time of 3 seconds. Validation confirms that this deep learning-based method significantly improves the factory's detection efficiency.

著者関連情報
© 2024 The Institute of Electronics, Information and Communication Engineers
feedback
Top