IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Foundations of Computer Science — Frontiers of Theoretical Computer Science —
Polynomial-Space Exact Algorithms for the Bipartite Traveling Salesman Problem
Mohd SHAHRIZAN OTHMANAleksandar SHURBEVSKIHiroshi NAGAMOCHI
著者情報
ジャーナル フリー

2018 年 E101.D 巻 3 号 p. 611-612

詳細
抄録

Given an edge-weighted bipartite digraph G=(A,B;E), the Bipartite Traveling Salesman Problem (BTSP) asks to find the minimum cost of a Hamiltonian cycle of G, or determine that none exists. When |A|=|B|=n, the BTSP can be solved using polynomial space in O*(42nnlog n) time by using the divide-and-conquer algorithm of Gurevich and Shelah (SIAM Journal of Computation, 16(3), pp.486-502, 1987). We adapt their algorithm for the bipartite case, and show an improved time bound of O*(42n), saving the nlog n factor.

著者関連情報
© 2018 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top