2019 年 E102.D 巻 1 号 p. 202-205
Conventional target recognition methods usually suffer from information-loss and target-aspect sensitivity when applied to radar high resolution range profile (HRRP) recognition. Thus, Effective establishment of robust and discriminatory feature representation has a significant performance improvement of practical radar applications. In this work, we present a novel feature extraction method, based on modified collaborative auto-encoder, for millimeter-wave radar HRRP recognition. The latent frame-specific weight vector is trained for samples in a frame, which contributes to retaining local information for different targets. Experimental results demonstrate that the proposed algorithm obtains higher target recognition accuracy than conventional target recognition algorithms.