IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
PDAA3C: An A3C-Based Multi-Path Data Scheduling Algorithm
Teng LIANGAo ZHANChengyu WUZhengqiang WANG
著者情報
ジャーナル フリー

2022 年 E105.D 巻 12 号 p. 2127-2130

詳細
抄録

In this letter, a path dynamics assessment asynchronous advantage actor-critic scheduling algorithm (PDAA3C) is proposed to solve the MPTCP scheduling problem by using deep reinforcement learning Actor-Critic framework. The algorithm picks out the optimal transmitting path faster by multi-core asynchronous updating and also guarantee the network fairness. Compared with the existing algorithms, the proposed algorithm achieves 8.6% throughput gain over RLDS algorithm, and approaches the theoretic upper bound in the NS3 simulation.

著者関連情報
© 2022 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top