IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Enriched Multimedia — Media technologies opening up the future —
CQTXNet: A Modified Xception Network with Attention Modules for Cover Song Identification
Jinsoo SEOJunghyun KIMHyemi KIM
著者情報
ジャーナル フリー

2024 年 E107.D 巻 1 号 p. 49-52

詳細
抄録

Song-level feature summarization is fundamental for the browsing, retrieval, and indexing of digital music archives. This study proposes a deep neural network model, CQTXNet, for extracting song-level feature summary for cover song identification. CQTXNet incorporates depth-wise separable convolution, residual network connections, and attention models to extend previous approaches. An experimental evaluation of the proposed CQTXNet was performed on two publicly available cover song datasets by varying the number of network layers and the type of attention modules.

著者関連情報
© 2024 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top