2024 年 E107.D 巻 11 号 p. 1385-1395
This article focuses on improving the BiSeNet v2 bilateral branch image segmentation network structure, enhancing its learning ability for spatial details and overall image segmentation accuracy. A modified network called “BiconvNet” is proposed. Firstly, to extract shallow spatial details more effectively, a parallel concatenated strip and dilated (PCSD) convolution module is proposed and used to extract local features and surrounding contextual features in the detail branch. Continuing on, the semantic branch is reconstructed using the lightweight capability of depth separable convolution and high performance of ConvNet, in order to enable more efficient learning of deep advanced semantic features. Finally, fine-tuning is performed on the bilateral guidance aggregation layer of BiSeNet v2, enabling better fusion of the feature maps output by the detail branch and semantic branch. The experimental part discusses the contribution of stripe convolution and different sizes of empty convolution to image segmentation accuracy, and compares them with common convolutions such as Conv2d convolution, CG convolution and CCA convolution. The experiment proves that the PCSD convolution module proposed in this paper has the highest segmentation accuracy in all categories of the Cityscapes dataset compared with common convolutions. BiConvNet achieved a 9.39% accuracy improvement over the BiSeNet v2 network, with only a slight increase of 1.18M in model parameters. A mIoU accuracy of 68.75% was achieved on the validation set. Furthermore, through comparative experiments with commonly used autonomous driving image segmentation algorithms in recent years, BiConvNet demonstrates strong competitive advantages in segmentation accuracy on the Cityscapes and BDD100K datasets.