IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Rotation-Invariant Convolution Networks with Hexagon-Based Kernels
Yiping TANGKohei HATANOEiji TAKIMOTO
著者情報
ジャーナル フリー

2024 年 E107.D 巻 2 号 p. 220-228

詳細
抄録

We introduce the Hexagonal Convolutional Neural Network (HCNN), a modified version of CNN that is robust against rotation. HCNN utilizes a hexagonal kernel and a multi-block structure that enjoys more degrees of rotation information sharing than standard convolution layers. Our structure is easy to use and does not affect the original tissue structure of the network. We achieve the complete rotational invariance on the recognition task of simple pattern images and demonstrate better performance on the recognition task of the rotated MNIST images, synthetic biomarker images and microscopic cell images than past methods, where the robustness to rotation matters.

著者関連情報
© 2024 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top