IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Automatic Allocation of Training Data for Speech Understanding Based on Multiple Model Combinations
Kazunori KOMATANIMikio NAKANOMasaki KATSUMARUKotaro FUNAKOSHITetsuya OGATAHiroshi G. OKUNO
著者情報
ジャーナル フリー

2012 年 E95.D 巻 9 号 p. 2298-2307

詳細
抄録
The optimal way to build speech understanding modules depends on the amount of training data available. When only a small amount of training data is available, effective allocation of the data is crucial to preventing overfitting of statistical methods. We have developed a method for allocating a limited amount of training data in accordance with the amount available. Our method exploits rule-based methods for when the amount of data is small, which are included in our speech understanding framework based on multiple model combinations, i.e., multiple automatic speech recognition (ASR) modules and multiple language understanding (LU) modules, and then allocates training data preferentially to the modules that dominate the overall performance of speech understanding. Experimental evaluation showed that our allocation method consistently outperforms baseline methods that use a single ASR module and a single LU module while the amount of training data increases.
著者関連情報
© 2012 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top