IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Degraded image classification using knowledge distillation and robust data augmentations
Dinesh DAULTANIMasayuki TANAKAMasatoshi OKUTOMIKazuki ENDO
著者情報
ジャーナル フリー 早期公開

論文ID: 2024EDP7016

この記事には本公開記事があります。
詳細
抄録

Image classification is a typical computer vision task widely used in practical applications. The images used for training image classification networks are often clean, i.e., without any image degradation. However, Convolutional neural networks trained on clean images perform poorly on degraded or corrupted images in the real world. In this study, we effectively utilize robust data augmentation (DA) with knowledge distillation to improve the classification performance of degraded images. We first categorize robust data augmentations into geometric-and-color and cut-and-delete DAs. Next, we evaluate the effectual positioning of cut-and-delete DA when we apply knowledge distillation. Moreover, we also experimentally demonstrate that combining the RandAugment and Random Erasing approach for geometric-and-color and cut-and-delete DA improves the generalization of the student network during the knowledge transfer for the classification of degraded images.

著者関連情報
© 2024 The Institute of Electronics, Information and Communication Engineers
feedback
Top