IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Multi-Scale Rail Surface Anomaly Detection Based on Weighted Multivariate Gaussian Distribution
Yuyao LIUQingyong LIShi BAOWen WANG
著者情報
ジャーナル フリー 早期公開

論文ID: 2024EDP7049

この記事には本公開記事があります。
詳細
抄録

Rail surface anomaly detection, referring to the process of identifying and localizing abnormal patterns in rail surface images, faces the limitation of robustness because of the large diversity of scale, quantity, and morphology of surface anomalies. To address this challenge, we propose a multi-scale rail surface anomaly detection method (MRS-AD) based on a distribution model, which cooperates neighborhood information to precisely locate rail surface anomalies. Specifically, MRS-AD integrates multi-scale structures to enhance the perception of different scale information of anomalies. Furthermore, the neighborhood information is utilized to capture the correlations between adjacent regions, and thereby a weighted multivariate Gaussian distribution model is estimated to improve the recognition capability of anomalous morphologies. To validate the effectiveness of MRS-AD, we collected and built a Rail Surface Anomaly Detection dataset (RSAD), considering the scale and quantity of rail surface anomalies. Extensive experiments on RSAD, RSDD and NEU-RSDD-2 demonstrate the superiority of MRS-AD. The code and dataset are publicly available at https://github.com/lyy70/MRS-AD

著者関連情報
© 2024 The Institute of Electronics, Information and Communication Engineers
feedback
Top