IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

DGA-based Malware Communication Detection from DoH Traffic Using Hierarchical Machine Learning Analysis
Rikima MITSUHASHIYong JINKatsuyoshi IIDAYoshiaki TAKAI
著者情報
ジャーナル フリー 早期公開

論文ID: 2024NTP0004

この記事には本公開記事があります。
詳細
抄録

Encrypted domain name resolution is increasingly being used to protect the privacy of Internet users, but it may prevent network administrators from detecting malicious communications. Unfortunately, DGA-based malware can exploit it to hide the domain names it generates, so network administrators need a monitoring framework to maintain network security. In this paper, we propose a novel malware detection system using hierarchical machine learning analysis, which incorporates machine learning models, including XGBoost, LightGBM, CatBoost, and RGF. The evaluation results confirm that the proposed system can detect DGA-based malware communication generated by PadCrypt, Sisron, Tinba, and Zloader with 99.19% accuracy. The results showthat the proposed system can detect DGA-based malware communications from DoH traffic with sufficient accuracy to support network administrators.

著者関連情報
© 2024 The Institute of Electronics, Information and Communication Engineers
feedback
Top