Transactions of the JSME (in Japanese)
Online ISSN : 2187-9761
ISSN-L : 2187-9761
Solid Mechanics and Materials Engineering
Numerical analysis on the formation of Cottrell atmosphere using Fokker–Planck equation
Maki TANIYAMAShunsuke KOBAYASHIRyuichi TARUMI
Author information
JOURNAL OPEN ACCESS

2022 Volume 88 Issue 910 Pages 22-00077

Details
Abstract

In this study, we develop a new theoretical model for the quantitative prediction of atomic diffusion in a crystalline material. Concentration of the solute atom is expressed by a probability density function whose time evolution is governed by the Fokker–Planck equation. The stochastic differential equation describes the two competitive processes; drift motion by the stress field and thermal diffusion by the Brownian motion. Non-singular stress field by a lattice defect is obtained from nonlinear elastoplasticity on Riemann–Cartan manifold. Numerical integration is conducted using the finite difference method which satisfies the numerical stability criteria. Present analysis demonstrates the formation of Cottrell atmosphere around a straight edge dislocation. The probability density reaches to an equilibrium distribution and the time evolution satisfies the Cottrell’s theoretical prediction quantitatively. The mean diffusion path is predicted from the streamline which includes the surface effects. We also demonstrate the dislocation pipe diffusion, i.e., accelerated diffusion along a dislocation line.

Content from these authors
© 2022 The Japan Society of Mechanical Engineers

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
Previous article Next article
feedback
Top