Transactions of the JSME (in Japanese)
Online ISSN : 2187-9761
ISSN-L : 2187-9761

This article has now been updated. Please use the final version.

Development of a EBSD-FEM data conversion interface and the image-based crystal plasticity analysis
Yoshiki KAWANOTetsuya OHASHITsuyoshi MAYAMAMasaki TANAKAMorihiro SAKAMOTOYelm OKUYAMAMichihiro SATO
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 17-00559

Details
Abstract

Image-based deformation simulation of microstructures in metals is attracting attention; however, the data conversion processes from the images of microstructures into the geometric models for the deformation simulation are now inconvenient, and there is a possibility that it prevents diffusion of the image-based simulation. In order to solve the problem, we developed an interface to convert the data of crystal orientation maps obtained by Electron BackScatter Diffraction (EBSD) patterns into that of geometric models for Crystal Plasticity Finite Element (CPFE) analysis. The interface incorporates several functions for data cleaning and coarse graining of the microstructures: functions to narrow down the limits of Eulerian angles presenting crystal orientations, integrate crystal grains with similar crystal orientations, eliminate small crystal grains, select representative crystal orientation in each crystal grain, and so on. The interface was applied to an orientation map of polycrystal microstructure in pure titanium, and the course-grained geometric models were successfully obtained. Image-based CPFE analysis was conducted using the geometric models with different number of finite elements. The numbers of crystal grains were assumed to be around 50 in any geometric models. A dislocation density dependent constitutive equation was employed and uniaxial tensile loading was applied to the geometric models by the forced displacement. The results showed that spatial distributions of stress, strain, and dislocation density were good agreement among geometric models with different number of elements in both elastic and plastic ranges while values of the strain and dislocation density showed quantitatively dependency of the number of elements on their distributions in the plastic ranges. These features indicate that the qualitatively similar results can be obtained using the developed interface on the condition that coarse graining of the microstructures does not occur even though the number of elements is changed.

Content from these authors
© 2018 The Japan Society of Mechanical Engineers
feedback
Top