Transactions of the JSME (in Japanese)
Online ISSN : 2187-9761
ISSN-L : 2187-9761

This article has now been updated. Please use the final version.

Two-dimensional stress field prediction using deep learning technique and relative frequency equalized data augmentation method
Takuya TOYOSHIYoshitaka WADA
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: 24-00072

Details
Abstract

This paper presents a data augmentation method for generating a surrogate model of numerical analysis results. The proposed method focuses on the relative frequency of learning data for generating a learning model using deep learning techniques. Generally, data augmentation techniques are known to be useful for improving prediction accuracy. Adding noise and data duplication are commonly used for predicting numerical simulation results, but it is essential to carefully consider the amount of noise or choose a duplication target. However, these techniques are not appropriate for generating surrogate models. The reason is that the numerical analysis results mostly have high data imbalance, and no specific solution has been presented. The method proposed in this paper solves this problem and aims to be a simple and highly versatile data augmentation method. This paper describes the application of the proposed method to predict two-dimensional stress fields. It was confirmed that by increasing the number of data augmentations using the proposed method, the prediction errors were reduced for three different stress components stably. Additionally, it was confirmed that the prediction accuracy improved 5.81 to 27.0% compared to that of the data augmentation by simple duplication.

Content from these authors
© 2024 The Japan Society of Mechanical Engineers

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
feedback
Top