Tribology Online
Online ISSN : 1881-2198
ISSN-L : 1881-218X
Article
Effects of Oxygen on Smear Formation in Heat Assisted Magnetic Recording System
Kenji YakataHiroshi KurafujiHiroshi TaniRenguo LuShinji KoganezawaShouhei KawadaNorio Tagawa
Author information
JOURNAL OPEN ACCESS

2022 Volume 17 Issue 4 Pages 348-355

Details
Abstract

Heat-assisted magnetic recording (HAMR) is expected to be a realistic next-generation technology for increasing the recording density of hard disks. However, the magnetic layer is heated above the Curie temperature, and, as a result, the heated lubricant is desorbed from the disk by decomposition and evaporation, which causes a problem as it adheres to the air-bearing surface (ABS) as a smear. In this study, pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) analysis was performed in helium and air environments to investigate the decomposition mechanism of perfluoropolyether (PFPE) lubricant D-4OH by heating and in the presence of oxygen. In the helium environment, thermal decomposition of the end groups was confirmed at 350°C and above with a possibility of main chain decomposition at 450°C. In the air environment, decomposition of the end group was confirmed at 250°C and above, and decomposition of the main chain was confirmed at 450°C. Experiments using a pin-on-disk tester were conducted to confirm what happens to the area of smear when a thin film of D-4OH lubricant coated on an actual disk is laser heated. As a result, it was confirmed that the area of smear decreased even at an oxygen concentration of 5%.

Content from these authors
© 2022 by Japanese Society of Tribologists

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top