Biomedical Research
Online ISSN : 1880-313X
Print ISSN : 0388-6107
ISSN-L : 0388-6107
Volume 38, Issue 4
Displaying 1-5 of 5 articles from this issue
Full Papers
  • Keishu MURAKAMI, Yunyan WU, Tadaatsu IMAIZUMI, Yuka AOKI, Qiang LIU, ...
    2017 Volume 38 Issue 4 Pages 221-227
    Published: August 01, 2017
    Released on J-STAGE: August 09, 2017
    JOURNAL FREE ACCESS

    Differentiated embryonic chondrocyte (DEC) 1 has been reported to be involved in cell differentiation, hypoxia response, and cancer progression. Recent studies have demonstrated that hypoxia-inducible factor (HIF)-1α induces epithelial-mesenchymal transition (EMT) in carcinoma cells to facilitate cell invasiveness and metastasis. However, it remains unclear whether DEC1 participates in hypoxia-mediated EMT processes. In the present study, we reported that hypoxia induced DEC1 expression in hepatocellular carcinoma (HCC) HepG2 cells, and DEC1 negatively regulated expression of HIF-1α and E-cadherin in transcriptional/translational levels. Cell morphological changes were evaluated with hematoxylin and eosin (H-E) staining. Exposure to hypoxia caused spindle-like shape in some of the HepG2 cells, and DEC1 overexpression furthered these changes. In conclusions, DEC1 is involved in hypoxia-induced EMT processes via negatively regulating E-cadherin expression in HepG2 cells.

    Download PDF (3962K)
  • Nobuhito IKEDA, Natsumi NAKAZAWA, Yasutaka KURATA, Hisako YAURA, Fikr ...
    2017 Volume 38 Issue 4 Pages 229-238
    Published: August 01, 2017
    Released on J-STAGE: August 09, 2017
    JOURNAL FREE ACCESS

    Proepicardium (PE) cells generate cardiac fibroblasts, smooth muscle cells (SMCs) and endothelial cells that form coronary arteries. T-box18 (Tbx18) is a well-known marker of PE cells and epicardium. We examined whether Tbx18-positive cells differentiated from murine embryonic stem (ES) cells serve as PE progenitors to give rise to vascular SMCs and fibroblasts. To collect Tbx18-positive cells, we established Tbx18-EGFP knock-in mouse ES cells using the CRISPR/Cas9 system. We harvested the Tbx18-EGFP-positive cells on day 8, 10 and 14 after the initiation of differentiation; Tbx18 mRNA was enriched on day 8 to 14 and Snai2 mRNA was enriched on day 8 and 10, indicating successful collection of Tbx18-positive cells. Tbx18-EGFP-positive cells expressed the PE marker WT1 on day 8 and 10. They also expressed the SMC marker Acta2 and fibroblast markers Thy1 and Fsp1 on day 8 to 14, but did not express the endothelial cell marker PECAM or the cardiac cell marker CD166 or Myh7. In conclusion, Tbx18-positive cells represent a part of PE cells in the initial phase of differentiation and subsequently include SMCs as well as fibroblasts. These results indicate that Tbx18-positive cells serve as a PE progenitor to supply a variety of cells that contribute to the formation of coronary arteries.

    Download PDF (4555K)
  • Ryusuke SHODO, Manabu HAYATSU, Daisuke KOGA, Arata HORII, Tatsuo USHIK ...
    2017 Volume 38 Issue 4 Pages 239-248
    Published: August 01, 2017
    Released on J-STAGE: August 09, 2017
    JOURNAL FREE ACCESS

    In the cochlea, a high K+ environment in the endolymph is essential for the maintenance of normal hearing function, and the transport of K+ ions through gap junctions of the cochlear epithelium is thought to play an important role in endolymphatic homeostasis. The aim of the present study was to demonstrate the three-dimensional (3D) ultrastructure of spiral ligament root cells and interdental cells, which are located at both ends of the gap junction system of the cochlea epithelium. Serial semi-thin sections of plastic-embedded rat cochlea were mounted on glass slides, stained with uranyl acetate and lead citrate, and observed by scanning electron microscopy (SEM) using the backscattered electron (BSE) mode. 3D reconstruction of BSE images of serial sections revealed that the root cells were linked together to form a branched structure like an elaborate “tree root” in the spiral ligament. The interdental cells were also connected to each other, forming a comb-shaped cellular network with a number of cellular strands in the spiral limbus. Furthermore, TEM studies of ultra-thin sections revealed the rich presence of gap junctions in both root cells and interdental cells. These findings suggest the possibility that both root cells and interdental cells contribute to K+ circulation as the end portion of the epithelial cell gap junction system of the cochlea.

    Download PDF (14078K)
  • Qiang LIU, Tadaatsu IMAIZUMI, Keishu MURAKAMI, Hiroshi TANAKA, Yunya ...
    2017 Volume 38 Issue 4 Pages 249-255
    Published: August 01, 2017
    Released on J-STAGE: August 09, 2017
    JOURNAL FREE ACCESS

    The functions of differentiated embryonic chondrocyte gene (DEC) 1, a basic helix-loop-helix (bHLH) transcription factor, have been reported to be associated with the regulation of mammalian circadian rhythms, differentiation of chondrocytes and skeletal muscles, apoptosis, hypoxia-induced reactions and epithelial mesenchymal transition. Our previous report showed that another bHLH transcription factor DEC2 constitutes a negative feedback loop in Toll-like receptor 3 (TLR3)/interferon (IFN)-β-mediated inflammatory responses in human mesangial cells. However, the role of DEC1 in innate immune responses remains unclear. We have previously reported TLR3/IFN-β/retinoic acid-inducible gene-I (RIG-I)/CCL5 and TLR3/IFN-β/melanoma differentiation-associated gene 5 (MDA5)/CXCL10 axes in cultured normal human mesangial cells treated with polyinosinic-polycytidylic acid (poly IC), a synthetic double-stranded RNA that is sensed by TLR3. The present study was carried out to examine the involvement of DEC1 in these axes. DEC1 was constitutively expressed in human mesangial cells, and the expression was not altered by treatment with poly IC. Interestingly, RNA interference against DEC1 markedly enhanced the poly IC-induced expression of chemokines CXCL10 and CCL5. Knockdown of DEC1 increased the poly IC-induced MDA5 and RIG-I protein expression without affecting mRNA expression, and did not affect phosphorylation of signal transducer and transcription 1 (STAT1). DEC1 may serve as an anti-inflammatory factor by negative regulation of MDA5/CXCL10 and RIG-I/CCL5 in human mesangial cells treated with poly IC.

    Download PDF (1022K)
  • Atsunaka SAKURAI, Tomoka HASEGAWA, Ai KUDO, Zhao SHEN, Tomoya NAGAI, M ...
    2017 Volume 38 Issue 4 Pages 257-267
    Published: August 01, 2017
    Released on J-STAGE: August 09, 2017
    JOURNAL FREE ACCESS

    To assess the chronological participation of sclerostin and FGF23 in bone metabolism, this study tracked the immunolocalization of sclerostin and FGF23 in the metaphyses of murine long bones from embryonic day 18 (E18) through 1 day after birth, 1 week, 2 weeks, 4 weeks, 8 weeks, and 20 weeks of age. We have selected two regions in the metaphyseal trabeculae for assessing sclerostin and FGF23 localization: close to the chondro-osseous junction, i.e., bone modeling site even in the adult animals, and the trabecular region distant from the growth plate, where bone remodeling takes place. As a consequence, sclerostin-immunopositive osteocytes could not be observed in both close and distant trabecular regions early at the embryonic and young adult stages. However, osteocytes gradually started to express sclerostin in the distant region earlier than in the close region of the trabeculae. Immunoreactivity for FGF23 was observed mainly in osteoblasts in the early stages, but detectable in osteocytes in the later stages of growth in trabecular and cortical bones. Fgf23 was weakly expressed in the embryonic and neonatal stages, while the receptors, Fgfr1c and αKlotho were strongly expressed in femora. At the adult stages, Fgf23 expression became more intense while Fgfr1c and aKlotho were weakly expressed. These findings suggest that sclerostin is secreted by osteocytes in mature bone undergoing remodeling while FGF23 is synthesized by osteoblasts and osteocytes depending on the developmental/growth stage. In addition, it appears that FGF23 acts in an autocrine and paracrine fashion in fetal and neonatal bones.

    Download PDF (13455K)
feedback
Top