Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Advance online publication
Displaying 1-24 of 24 articles from this issue
  • Shuji SHIMADA, Kyosuke TANIMOTO, Hayato SASAKI, Takumi TAGA, Takeru SA ...
    Article type: Original
    Article ID: 24-0001
    Published: 2024
    Advance online publication: April 20, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Several artificial intelligence (AI) systems have been developed for glomerular pathology analysis in clinical settings. However, the application of AI systems in nonclinical fields remains limited. In this study, we trained a convolutional neural network model, which is an AI algorithm, to classify the severity of Tensin 2 (TNS2)-deficient nephropathy into seven categories. A dataset consisting of 803 glomerular images was generated from kidney sections of TNS2-deficient and wild-type mice. Manual evaluations of the images were conducted to assess their glomerular injury scores. The trained AI achieved approximately 70% accuracy in predicting the glomerular injury score for TNS2-deficient nephropathy. However, the AI achieved approximately 100% accuracy when considering predictions within one score of the true label as correct. The AI’s predicted mean score closely matched the true mean score. In conclusion, while the AI model may not replace human judgment entirely, it can serve as a reliable second assessor in scoring glomerular injury, offering potential benefits in enhancing the accuracy and objectivity of such assessments.

    Download PDF (725K)
  • Tianjiao SHENG, Lei WANG, Simeng YAN, Qiuyu WEI, Xiao GENG, Weiru LAN, ...
    Article type: Original
    Article ID: 23-0166
    Published: 2024
    Advance online publication: April 09, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Ulcerative colitis (UC) is characterized by overactive inflammatory response, impaired intestinal mucosal barrier and disrupted gut microbiota. Youhua Kuijie formula is a classic empirical prescription based on the pathogenesis of UC. The present study was designed to verify the protective effect of Youhua Kuijie Formula on DSS-induced UC in mice and uncover the related mechanism. Youhua Kuijie Formula were orally administrated to UC mice induced by DSS dissolved in drinking water for ten days. The protective effect of Youhua Kuijie Formula was evidenced by reduced pathological symptoms accompanied by palliative inflammatory response and relatively intact intestinal barrier. The data from 16S rRNA gene sequencing and GC-MS untargeted metabolomics indicated that the supplement of Youhua Kuijie Formula restructured gut microbiota community structure, and thereby modulated the metabolic profiles in UC mice. The analysis of pathway enrichment analysis suggested the major alterations in metabolic pathway were related to protein digestion and absorption. Besides, the results of the following experiments suggested that Youhua Kuijie Formula treatment increased adenosine monophosphate-activated protein kinase (AMPK) activation, decreased mechanistic target of rapamycin (mTOR) phosphorylation, and thereby reversing autophagy deficiency in the intestinal tract of UC mice. Collectively, our results demonstrated that the regulation of AMPK/mTOR was involved in Youhua Kuijie Formula administration mediated protective effect on UC.

    Download PDF (2554K)
  • Shuji TAKEDA, Rika HOSHIAI, Miyuu TANAKA, Takeshi IZAWA, Jyoji YAMATE, ...
    Article type: Original
    Article ID: 23-0089
    Published: 2024
    Advance online publication: March 28, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Canavan disease (CD) is a fatal hereditary neurological disorder caused by a mutation in the aspartoacylase (ASPA) gene and characterized by neurological signs and vacuolation in the central nervous system (CNS). The mutation inhibits the hydrolysis of N-acetyl-aspartate (NAA) resulting in accumulation of NAA in the CNS. A new Aspa-knockout rat was generated by transcription activator-like effector nuclease (TALEN) technology. Herein we describe the pathological and morphometrical findings in the brain and spinal cords of Aspa-knockout rats. Although Aspa-knockout rats did not show any neurological signs, vacuolation with swollen axons, hypomyelination, and activated swollen astrocytes were observed mainly in the brainstem reticular formation, ascending and descending motor neuron pathway, and in the olfactory tract. Morphometrical analysis revealed no obvious change in the number of neurons. These changes in the CNS are similar to human CD, suggesting that this animal model would be useful for further study of treatment and understanding the pathophysiology of human CD.

    Download PDF (3220K)
  • Julia Chu-Ning HSU, Hsu-Wen TSENG, Chia-Hui CHEN, Tzong-Shyuan LEE
    Article type: Original
    Article ID: 23-0148
    Published: 2024
    Advance online publication: March 21, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Transient receptor potential vanilloid 1 (TRPV1), a ligand-gated cation channel, is a receptor for vanilloids on sensory neurons and is also activated by capsaicin, heat, protons, arachidonic acid metabolites, and inflammatory mediators on neuronal or non-neuronal cells. However, the role of the TRPV1 receptor in pro-inflammatory cytokine secretion and its potential regulatory mechanisms in lipopolysaccharide (LPS)-induced inflammation has yet to be entirely understood. To investigate the role and regulatory mechanism of the TRPV1 receptor in regulating LPS-induced inflammatory responses, bone marrow-derived macrophages (BMDMs) harvested from wild-type (WT) and TRPV1 deficient (Trpv1-/-) mice were used as the cell model. In WT BMDMs, LPS induced an increase in the levels of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase (iNOS), and nitric oxide, which were attenuated in Trpv1-/- BMDMs. Additionally, the phosphorylation of IκBα and mitogen-activated protein kinases, as well as the translocation of NF-κB and AP-1, were all decreased in LPS-treated Trpv1-/- BMDMs. Immunoprecipitation assay revealed that LPS treatment increased the formation of TRPV1–TLR4–CD14 complex in WT BMDMs. Genetic deletion of TRPV1 in BMDMs impaired the LPS-triggered immune-complex formation of TLR4, MyD88, and IRAK, all of which are essential regulators in LPS-induced activation of the TLR4 signaling pathway. Moreover, genetic deletion of TRPV1 prevented the LPS-induced lethality and pro-inflammatory production in mice. In conclusion, the TRPV1 receptor may positively regulate the LPS-mediated inflammatory responses in macrophages by increasing the interaction with the TLR4–CD14 complex and activating the downstream signaling cascade.

    Download PDF (1289K)
  • Cihan CAKIR, Goktan KUSPINAR, Kiper ASLAN, Cengiz BOZYIGIT, Isil KASAP ...
    Article type: Original
    Article ID: 23-0179
    Published: 2024
    Advance online publication: March 16, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Dehydroepiandrosterone (DHEA) is frequently integrated as an adjuvant in over a quarter of controlled ovarian hyperstimulation (COH) protocols, despite the ongoing debate regarding its impact. This study aimed to evaluate the efficacy and mechanism of action of DHEA on ovarian follicular development and ovarian response in rats with varying ovarian reserves. The study involved 75 rats categorized into 15 distinct groups. The ovarian tissues of rats in both the normal ovarian reserve group and the premature ovarian insufficiency (POI) group, induced by 4-vinylcyclohexene diepoxide (VCD) injection, were subjected to histomorphological and biochemical analyses following the administration of DHEA, either alone or in combination with COH. Follicle counting was performed on histological sections obtained from various tissues. Serum concentrations of AMH and the quantification of specific proteins in ovarian tissue, including PTEN, PI3K, AKT, COX-2, caspase-3, as well as assessments of total antioxidant status and total oxidant status, were conducted employing the Enzyme-Linked Immunosorbent Assay (ELISA) method. The impact of DHEA exhibited variability based on ovarian reserve. In the POI model, DHEA augmented follicular development and ovarian response to the COH protocol by upregulating the PTEN/PI3K/pAKT signaling pathway, mitigating apoptosis, inflammation, and oxidative stress, contrary to its effects in the normal ovarian reserve group. In conclusion, it has been determined that DHEA may exert beneficial effects on ovarian stimulation response by enhancing the initiation of primordial follicles and supporting antral follicle populations.

    Download PDF (6223K)
  • Tung-Sheng CHEN, Wei‐Wen KUO, Chih-Yang HUANG
    Article type: Original
    Article ID: 23-0109
    Published: 2024
    Advance online publication: March 07, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Cardiomyopathy is one of complications related to diabetes. Stem cell transplantation shows potential in diabetic cardiomyopathy treatment. Epigallocatechin-3-gallate (EGCG) is one of the major components found in green tea. Although stem cell transplantation and green tea EGCG supplementation show therapeutic effects on cardiomyopathy, the detailed cellular mechanisms in stem cell transplantation coupled with EGCG treatment remain unclear. This study investigates whether adipose-derived stem cells (ADSC) pretreated with EGCG show better protective effect on diabetic cardiomyopathy than ADSC without EGCG pretreatment. A cell model indicated that ADSC pretreated with EGCG increased cell functions including colony formation, migration and survival markers. All of these functions are blocked by small interfering C-X-C motif chemokine receptor 4 (siCXCR4) administration. These findings suggest that ADSC pretreatment with EGCG increases cell functions through CXCR4 expression. A diabetic animal model was designed to verify the above findings, including Sham, DM (diabetic rats), DM+ADSC (DM rats receiving autologous transplantation of ADSC) and DM+E-ADSC (DM rats receiving EGCG pretreated ADSC). Compared to the Sham, we found that all of pathophysiological signalings were activated in the DM group, including functional changes (decrease in ejection fraction and fractional shortening), structural changes (disarray and fibrosis) and molecular changes (increases in apoptotic, fibrotic, hypertrophic markers and decreases in survival and longevity markers). E-ADSC (DM+E-ADSC) transplantation shows significant improvement in the above pathophysiological signalings greater than ADSC (DM+ADSC). Therefore, ADSC pretreated with EGCG may contribute to clinical applications for diabetic patients with cardiomyopathy.

    Download PDF (9869K)
  • Ayaka SAITO, Ryosuke TAHARA, Michiko HIROSE, Masayo KADOTA, Ayumi HASE ...
    Article type: Original
    Article ID: 24-0002
    Published: 2024
    Advance online publication: March 06, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Allele-specific monoallelic gene expression is a unique phenomenon and a great resource for analyzing gene regulation. To study this phenomenon, we established new embryonic stem (ES) cell lines derived from F1 hybrid blastocysts from crosses between four mouse subspecies (Mus musculus domesticus, C57BL/6; M. musculus molossinus, MSM/Ms; M. musculus, PWK; M. musculuscastaneus, HMI/Ms) and analyzed the expression levels of undifferentiated pluripotent stem cell markers and karyotypes of each line. To demonstrate the utility of our cell lines, we analyzed the allele-specific expression pattern of the Inpp5d gene as an example. The allelic expression depended on the parental alleles; this dependence could be a consequence of differences in compatibility between cis- and trans-elements of the Inpp5d gene from different subspecies. The use of parental mice from four subspecies greatly enhanced genetic polymorphism. The F1 hybrid ES cells retained this polymorphism not only in the Inpp5d gene, but also at a genome-wide level. As we demonstrated for the Inpp5d gene, the established cell lines can contribute to the analysis of allelic expression imbalance based on the incompatibility between cis- and trans-elements and of phenotypes related to this incompatibility.

    Download PDF (906K)
  • Kenta ONUMA, Masaki WATANABE, Nobuya SASAKI
    Article type: Review
    Article ID: 24-0010
    Published: 2024
    Advance online publication: February 22, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Accurately and promptly assessing pain in experimental animals is extremely important to avoid unnecessary suffering of the animals and to enhance the reproducibility of experiments. This is a key concern for veterinarians, animal caretakers, and researchers from the perspectives of veterinary care and animal welfare. Various methods including ethology, immunohistochemistry, electrophysiology, and molecular biology are used for pain assessment. However, the grimace scale, which was developed by taking cues from interpreting pain through facial expressions of non-verbal infants, has become recognized as a very simple and practical method for objectively evaluating pain levels by scoring changes in an animal’s expressions. This method, which was first implemented with mice approximately 10 years ago, is now being applied to various experimental animals and is widely used in research settings. This review focuses on the usability of the grimace scale from the “cage-side” perspective, aiming to make it a more user-friendly tool for those involved in animal experiments. Differences in facial expressions in response to pain in various animals, examples of applying the grimace scale, current automated analytical methods, and future prospects are discussed.

    Download PDF (1255K)
  • Mira KATO-SUZUKI, Yuko OKAMATSU-OGURA, Osamu INANAMI, Kazuhiro KIMURA
    Article type: Original
    Article ID: 23-0123
    Published: 2024
    Advance online publication: February 21, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Vitamin A is an important nutrient for multiple physiological functions. To elucidate the role of vitamin A in vivo, vitamin A-deficient diets have been often used in mice to establish a vitamin A-deficiency model. However, the information on the appropriate feeding periods and time course of changes in vitamin A content in organs after the start of vitamin A-deficient diet feeding is lacking. This study aimed to assess the retinoids levels in liver and white adipose tissue in mice fed a vitamin A-deficient diet for £8 weeks. High-performance liquid chromatography was used to measure the retinoids levels in liver and white adipose tissue every 2 weeks for £8 weeks. Vitamin A-deficient diet feeding significantly decreased retinol in the liver over 6 weeks, but retinyl palmitate, a main storage form of vitamin A, was not changed over 8 weeks. The plasma retinol level remained constant throughout the experiment. In white adipose tissue, retinyl palmitate gradually decreased over 8 weeks. These results indicate that vitamin A-deficient diet feeding longer than 6 weeks reduced retinol in liver and retinyl palmitate in white adipose tissue over 8 weeks, although it is not enough for the induction of a whole-body vitamin A deficiency.

    Download PDF (2521K)
  • Eri ADACHI, Maki MURAKOSHI, Terumi SHIBATA, Kenta SHIMOZAWA, Hiroko SA ...
    Article type: Original
    Article ID: 23-0080
    Published: 2024
    Advance online publication: February 16, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Progranulin (PGRN) may have two opposing effects—inflammation and anti-inflammation—in different diseases. Although previous studies have reported that PGRN is involved in liver fibrosis, its involvement in tubulointerstitial fibrosis remains to be fully elucidated. Herein, we investigated these issues using PGRN-knockout (KO) mice treated with unilateral ureteral obstruction (UUO). Eight-week-old male PGRN-KO and wild-type (WT) mice were euthanized 3 and 7 days following UUO, and their kidneys were harvested for histopathological analysis. The renal expression of PGRN was evaluated by immunohistochemical and/or western blot analyses. The renal mRNA levels of markers related to inflammation (Il1b, Tnf, Il6, Ccl2, and Adgre1) and fibrosis (Tgfb1, Acta2, Fn1, and Col1a2) were evaluated using quantitative PCR. Histological changes such as renal tubular atrophy, urinary casts, and tubulointerstitial fibrosis were significantly improved in UUO-KO mice compared with UUO-WT mice. Quantitative PCR revealed that the mRNA expression levels of all inflammation- and fibrosis-related markers were lower in UUO-KO mice than in UUO-WT mice at 3 and/or 7 days after UUO. Moreover, PGRN and GRN protein levels were higher in the kidneys of UUO-WT mice than in mice that did not undergo UUO. Elevated GRN levels associated with excess PGRN levels may be involved in the occurrence of renal inflammation and fibrosis in UUO mice.

    Download PDF (1169K)
  • Natsuki MIKAMI, Chi Lieu Kim NGUYEN, Yuki OSAWA, Kanako KATO, Miyuki I ...
    Article type: Original
    Article ID: 23-0171
    Published: 2024
    Advance online publication: February 07, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Vesicular trafficking is essential for the transport of intracellularly produced functional molecules to the plasma membrane and extracellular space. The exocyst complex, composed of eight different proteins, is an important functional machinery for “tethering” in vesicular trafficking. Functional studies have been conducted in laboratory mice to identify the mechanisms by which the deletion of each exocyst factor affect various biological phenomena. Interestingly, each exocyst factor-deficient mutant exhibits a different phenotype. This discrepancy may be due to the function of the exocyst factor beyond its role as a component of the exocyst complex. Male germline-specific conditional knockout (cKO) mice of the Exoc1 gene, which encodes one of the exocyst factors EXOC1 (SEC3), exhibit severe spermatogenesis defects; however, whether this abnormality also occurs in mutants lacking other exocyst factors remains unknown. In this study, we found that exocyst factor EXOC3 (SEC6) was not required for spermatogenesis, but depletion of EXOC7 (EXO70) led to severe spermatogenesis defects. In addition to being a component of the exocyst complex, EXOC1 has other functions. Notably, male germ cell-specific Exoc7 cKO and Exoc1 cKO mice exhibited phenotypic similarities, suggesting the importance of the exocyst complex for spermatogenesis. The results of this study will contribute to further understanding of spermatogenesis from the aspect of vesicular trafficking.

    Download PDF (24170K)
  • Md. Zahir Uddin RUBEL, Osamu ICHII, Takashi NAMBA, Md. Abdul MASUM, Ts ...
    Article type: Original
    Article ID: 23-0129
    Published: 2024
    Advance online publication: February 02, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Systemic autoimmune diseases (ADs) might affect the morphology and function of gut-associated lymphoid tissue (LTs) indirectly; however, their exact relationship remains unclear. Therefore, we investigated mouse LTs in the anorectal canal and morphologically compared them between MRL/MpJ-Fas+/+ and MRL/MpJ-Faslpr/lpr mice. LT aggregations, also known as rectal mucosa-associated lymphoid tissues (RMALTs), were exclusively seen in the lamina propria and submucosa of the rectum. The mean size and number of the LT aggregations both significantly increased in MRL/MpJ-Faslpr/lpr mice compared to those in MRL/MpJ-Fas+/+ mice. The distance from the anorectal junction to the first LT aggregate was significantly shorter in MRL/MpJ-Faslpr/lpr mice than that in MRL/MpJ-Fas+/+ mice. Immunostaining revealed that the RMALTs included CD3+,CD4+, and CD8+ T cells; B220+ B cells; IBA1+ macrophages; Ki67+ proliferative cells; and PNAd+ high-endothelial venules (HEVs). The numbers of macrophages, proliferative cells, CD4+ T cells, CD8+ T cells, and HEVs were significantly increased in MRL/MpJ-Faslpr/lpr mice compared to those in MRL/MpJ mice. Furthermore, the gene expression levels of chemokines (Cxcl9 and Cxcl13) and their corresponding receptors (Cxcr3 and Cxcr5) were significantly higher in MRL/MpJ-Faslpr/lpr mice than those in MRL/MpJ-Fas+/+ mice. Although the morphology of rectal epithelium was comparable between the strains, M cell number was significantly higher in MRL/MpJ-Faslpr/lpr mice than in MRL/MpJ-Fas+/+ mice. Thus, ADs could alter RMALT morphology, and quantitative changes in T-cell subsets, proliferative cells, macrophages, HEVs, chemokine expression, and M cells could affect their cell composition and development.

    Download PDF (8033K)
  • Wachiryah THONG-ASA, Chatrung WASSANA, Kunyarat SUKKASEM, Pichcha INNO ...
    Article type: Original
    Article ID: 23-0165
    Published: 2024
    Advance online publication: February 01, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    We investigated the effect of gallic acid against neurodegenerative pathophysiology relevant to PD in mice with rotenone-induced toxicity. Forty male ICR mice were randomly divided into four groups: sham-veh, PD-veh (received subcutaneous injection with 2.5 mg/kg/48 h of rotenone); PD-Gal50; and PD-Gal100 (the latter two groups received subcutaneous injection with 2.5 mg/kg/48 h of rotenone and oral gavage with gallic acid 50 and 100 mg/kg/48 h, respectively). All treatments continued for 5 weeks with motor ability assessments once per week using hanging and rotarod tests. Brain tissue evaluation of oxidative status, together with striatal and substantia nigra par compacta (SNc) histological and immunohistological assessments were performed. The results indicate that rotenone significantly induced muscle weakness and motor coordination deficit from the first week of rotenone injection, and a significant increase in neuronal degeneration was presented in both the striatum and SNc. Decreased tyrosine hydroxylase and increment of glia fibrillary acidic protein expression in SNc were depicted. The deteriorating effects of rotenone were ameliorated by gallic acid treatment, especially 100 mg/kg dose. Rotenone did not induce a significant change of lipid peroxidation indicated, but gallic acid exhibited a significant inhibitory effect on the lipid peroxidation increment. Rotenone showed a significant reduction of superoxide dismutase activity, and neither 50 nor 100 mg/kg of gallic acid could alleviate this enzyme activity. In conclusion, gallic acid ameliorated motor deficits and preserving SNc neurons which led to maintaining of the dopaminergic source, including a nurturing effect on supporting astrocytes in mice with rotenone-induced neurodegeneration.

    Download PDF (1646K)
  • Masaki WATANABE, Yuko NIKAIDO, Nobuya SASAKI
    Article type: Original
    Article ID: 23-0158
    Published: 2024
    Advance online publication: January 20, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Proper administration of anesthesia is indispensable for the ethical treatment of lab animals in biomedical research. Therefore, selecting an effective anesthesia protocol is pivotal for the design and success of experiments. Hence, continuous development and refinement of anesthetic agents are imperative to improve research outcomes and elevate animal welfare. “Balanced anesthesia” involves using multiple drugs to optimize efficacy while minimizing side effects. The medetomidine, midazolam, and butorphanol, called MMB, and medetomidine, alfaxalone, and butorphanol, called MAB, are popular in Japan. However, the drawbacks of midazolam, including its extended recovery time, and the narrow safety margin of MAB, have prompted research for suitable alternatives. This study replaced midazolam in the MMB combination with remimazolam (RMZ), which is noted for its ultra-short half-life. The resulting combination, called MRB, was effective inproviding a wider safety margin compared to MAB while maintaining an anesthesia depth equivalent level to that of MMB in mice. Notably, MRB consistently exhibited better recovery scores after antagonist administration in contrast to MMB. Furthermore, the re-sedation phenomenon observed with MMB was not observed with MRB. The rapid metabolism of RMZ enables reliable anesthesia induction, circumventing the complications linked to MAB. Overall, MRB excelled in providing extended surgical anesthesia and swift post-antagonist recovery. These results highlight the potential of RMZ for broader animal research applications.

    Download PDF (1323K)
  • Xinpeng WANG, Linguo XIE, Chunyu LIU
    Article type: Original
    Article ID: 23-0113
    Published: 2024
    Advance online publication: January 11, 2024
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    CCR2 (C-C chemokine receptor type 2) is a monocyte chemokine associated with oxidative stress and inflammation. Kidney stones (KS) are composed of calcium oxalate (CaOx), which trigger renal oxidative stress and inflammatory. This study aims to evaluate the effects of CCR2 on KS in vivo and in vitro. Eight-week-old male C57BL/6J mice were intraperitoneally injected with glyoxylate (GOX) daily to establish a KS model, and along with CCR2 antagonist (INCB3344) treatment on days 2, 4, and 6. The results showed that CCR2 antagonist reduced renal injury markers (blood urea nitrogen and serum creatinine), alleviated renal tubular injury and CaOx crystal deposition. CCR2 antagonist also decreased CCR2 expression induced by GOX treatment and increased Nrf2 expression. GOX treatment promoted malondialdehyde (MDA) production, decreased glutathione (GSH) content, and inhibited catalase (CAT) and superoxide dismutase (SOD) activity, however, CCR2 antagonist attenuated the above effects of GOX. CCR2 antagonist had inhibitory effects on GOX-induced inflammatory cytokine expression (IL1B, IL6 and MCP1), and inhibited apoptosis by increasing Bcl-2 expression and decreasing Bax and cleaved-caspase 3 expression. In vitro experiments were performed by co-culture model of CaOx-induced damaged HK-2 cells and macrophage-like THP-1 cells. CCR2 antagonist inhibited CaOx-induced THP-1 cell M1 polarization by decreasing the TNF-α, IL6 and iNOS levels, and further alleviated CaOx-induced oxidative stress damage, inflammatory response and apoptosis of HK-2 cells. The study suggests that CCR2 antagonist may be resistant to CaOx crystals-induced oxidative stress and inflammation by inhibiting macrophage M1 polarization.

    Download PDF (10153K)
  • Miyuki SHINDO, Miho TERAO, Shuji TAKADA, Minoru ICHINOSE, Emiko MATSUZ ...
    Article type: Original
    Article ID: 23-0142
    Published: 2023
    Advance online publication: December 28, 2023
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    In CBA/J and C3H/HeJ mice, retinitis pigmentosa is inherited as an autosomal-recessive trait due to a mutation in Pde6b, which encodes cGMP phosphodiesterase subunit b. In these strains, the Y347X mutation in Pde6b leads to the upregulation of cGMP levels, increased Ca2+ influx induces rod death, and the outer segment and rod cells entirely disappeared by 35 days after birth. In the present study, we utilized the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas)9-mediated gene editing to repair the Y347X mutation in CBA/J and C3H/HeJ mice. Evaluation of the established CBA/J-Pde6b Y347Y/Y347X and C3H/HeJ-Pde6b Y347Y/Y347X mice, which were confirmed to have normal retinal layers by live fundoscopic imaging and histopathological analysis, revealed improved visual acuity based on the visual cliff and light/dark transition tests. Furthermore, our analyses revealed that the visible platform test was a more effective tool for testing visual behavior in these mice. The results suggest that the established strains can serve as control groups for CBA/J and C3H/HeJ in ophthalmology studies involving retinitis pigmentosa.

    Download PDF (504K)
  • Na AHN, Jaehak PARK, Jungjoon IHM, Sangho ROH
    Article type: Original
    Article ID: 23-0145
    Published: 2023
    Advance online publication: December 15, 2023
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    The pandemic has affected the lives of people all over the world. The effects of the pandemic on laboratory animal facilities and their operations through this unusual global event are poorly understood. Here, we have applied a methodological framework of qualitative approach including semi-structured interviews to investigate laboratory animal operations in Korea and how it has shaped the on-going management and laboratory operations of such facilities. A total of fifty-two individuals, including members and administrators of the Institutional Animal Care and Use Committee (IACUC), researchers, and animal facility managers and staff, were surveyed through purposeful sampling. Survey questions explored how the pandemic impacted the IACUC and the functioning of animal facilities, and what steps to take in preparation of a future pandemic-like crisis. Our survey found evidence of an increase in animal experiments in Korea during the pandemic that correlated with increases in research funding during that period, such as for vaccine development. Also, operational challenges due to pandemic-related health issues in personnel were resolved through overtime, rather than by reducing facility operations. Moreover, a refinement of post-approval monitoring (PAM) practices was also discussed by respondents. Taken together, our study offers insights into animal facility operations during the pandemic and outlines recommendations for safeguarding operations in such future scenarios.

    Download PDF (667K)
  • Tomoyuki SATO, Tomoyo OCHIISHI, Sayaka HIGO-YAMAMOTO, Katsutaka OISHI
    Article type: Original
    Article ID: 23-0104
    Published: 2023
    Advance online publication: December 14, 2023
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Disturbances in sleep-wake and circadian rhythms may reportedly precede the onset of cognitive symptoms in the early stages of Alzheimer’s disease (AD); however, the underlying mechanisms of these AD-induced sleep disturbances remain unelucidated. To specifically evaluate the involvement of amyloid β (Aβ) oligomers in AD-induced sleep disturbances, we examined circadian and sleep phenotypes using an Aβ-GFP transgenic (Aβ-GFP Tg) mouse characterized by intracellular accumulation of Aβ oligomers. The circadian rhythm and free-running period of wheel running activity were identical between Aβ-GFP Tg and littermate wild-type mice. The durations of rapid eye movement (REM) sleep were elongated in Aβ-GFP Tg mice; however, the durations of non-REM sleep and wakefulness were unaffected. The Aβ-GFP Tg mice exhibited shifts in the electroencephalogram (EEG) power spectra toward higher frequencies in the inactive light phase. These findings suggest that the intracellular accumulation of Aβ oligomers might be associated with sleep quality; however, its impact on circadian systems is limited.

    Download PDF (882K)
  • Naoshige ONO, Joji HORIKOSHI, Takeshi IZAWA, Kazuhiro NISHIYAMA, Miyuu ...
    Article type: Original
    Article ID: 23-0094
    Published: 2023
    Advance online publication: December 06, 2023
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    IL-19 is a member of IL-10 family and is mainly produced by macrophages. Acute pancreatitis (AP) is an inflammatory disease characterized by acinar cell injury and necrosis. In the present study, the role of IL-19 in AP and AP-associated lung injury in mice was explored using L-arginine-induced pancreatitis. Experimental pancreatitis was induced by intraperitoneal injection of L-arginine in wild-type (WT) and IL-19 gene deficient (IL-19 KO) mice. In L-arginine treated mice, the serum amylase level was significantly increased in IL-19 KO mice, and interstitial edema, analyzed using hematoxylin and eosin (H&E)-stained sections, was aggravated mildly in IL-19 KO mice compared to WT mice. Compared to WT mice treated with L-arginine, mRNA expression of tumor necrosis factor (TNF)-α was significantly upregulated in IL-19 KO mice treated with L-arginine. In WT mice, IL-19 mRNA was equally expressed in the pancreas of both control and L-arginine treated mice. The condition of lung alveoli in WT and IL-19 KO mice treated with L-arginine was then evaluated. In mice with L-arginine-induced pancreatitis, alveolar area was remarkedly decreased, and expression of lung myeloperoxidase was significantly increased in IL-19 KO mice compared to WT mice. In the lungs, mRNA expressions of IL-6 and inducible nitric oxide synthase were significantly increased in IL-19 KO mice compared to WT mice. In summary, IL-19 was proposed to alleviate L-arginine-induced pancreatitis by regulating TNF-α production and to protect against AP-related lung injury by inhibiting neutrophil migration.

    Download PDF (1110K)
  • Haiqing ZHANG, Jiyao QIN, Zunlin ZHOU, Juan YANG, Hao HUANG, Xiaoyan Y ...
    Article type: Original
    Article ID: 23-0092
    Published: 2023
    Advance online publication: November 29, 2023
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Transmembrane protein (TMEM230) is located in secretory/recycling vesicles, including synaptic vesicles in neurons. However, the functional relationship between TMEM230 and epilepsy is still a mystery. The aims of this study were to investigate the expression of TMEM230 in patients with temporal lobe epilepsy (TLE) and two different mice models of chronic epilepsy, and to determine the probable roles of TMEM230 in epilepsy. Our results showed that TMEM230 expression was increased in the temporal neocortex of epileptic patients and the hippocampus and cortex of epileptic mice compared with that in the control tissues. Moreover, TMEM230 was mainly expressed in the neurons in both humans and mice epileptic brain. TMEM230 co-localized with glutamate vesicular transporter 1 (VGLUT-1), but not with vesicular GABA transporter (VGAT). Mechanistically, coimmunoprecipitation confirmed that TMEM230 interacted with VGLUT-1, but not with VGAT in the hippocampus of epileptic mice. Lentivirus mediated overexpression of TMEM230 increased mice susceptibility to epilepsy and behavioural phenotypes of epileptic seizures during the kainite (KA)-induced chronic phase of epileptic seizures and the pentylenetetrazole (PTZ) kindling process, whereas lentivirus-mediated TMEM230 downregulation had the opposite effect. These results shed light on the functions of TMEM230 in neurons, suggesting that TMEM230 may play a critical role in the regulation of epileptic activity via influencing excitatory neurotransmission.

    Download PDF (905K)
  • Rui DAI, Yun XIANG, Rui FANG, Hai-Han ZHENG, Qing-Song ZHAO, Yan WANG
    Article type: Original
    Article ID: 23-0068
    Published: 2023
    Advance online publication: November 10, 2023
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Asthma is the most common chronic disease in the respiratory system of children caused by abnormal immunity that responses to common antigens. Lonicerin exerts anti-inflammatory activity in other inflammatory models through targeting enhancer of zeste homolog 2 (EZH2) that is related to asthma. We sought to explore the role and mechanism of lonicerin in regulating allergic airway inflammation. Mice were intraperitoneally injected 10 μg ovalbumin (OVA) on postnatal day 5 (P5) and P10, and then inhaled 3% aerosolized OVA for 10 min every day on P18–20, to establish asthmatic mice model. Lonicerin (10 or 30 mg/kg) was given to mice by intragastric administration on P16–P20. Notably, the administration of lonicerin amended infiltration of inflammatory cells and mucus hypersecretion. OVA-specific IgE level, inflammatory cell count and inflammatory cytokines in asthmatic mice were reduced after lonicerin treatment. Moreover, it suppressed the activity of EZH2 and activation of nuclear factor-kappa B (NF-ĸB) as evidenced by decreasing tri-methylation of histone H3 at lysine 27 and reducing nuclear translocation of NF-κB p65. In a word, Lonicerin may attenuate asthma by inhibiting EZH2/NF-κB signaling pathway.

    Download PDF (1063K)
  • Ryota TOCHINAI, Koichi KIMURA, Takeru SAIKA, Wataru FUJII, Hiroyuki MO ...
    Article type: Original
    Article ID: 23-0087
    Published: 2023
    Advance online publication: November 01, 2023
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy caused by dystrophin mutations. Inevitable progressive cardiomyopathy is a current leading cause of premature death although respiratory management has improved the prognosis of patients with DMD. Recent evidence shows that reducing the heart rate is expected as one of the promising strategies for heart failure treatment, but administering a sufficient dose of β-blocker for patients with DMD with tachycardia is difficult because of their low blood pressure (BP). Thus, this study aimed to clarify the role of ivabradine, which suppresses cardiac sinus node pacemakers without decreasing BP, in ameliorating cardiomyopathy progression in a rat model with DMD. A trans-oral single ivabradine administration demonstrated a declined dose-dependent heart rate without any significant BP reduction. Trans-gastric repeated administrations of 5 mg/kg of ivabradine twice a day for 3 months showed ameliorated cardiomyopathy in DMD rats based on echocardiography and histopathological observations (left ventricular dysfunction, right ventricular dysfunction, and myocardial fibrosis) as compared with vehicle administration. Our finding indicates that ivabradine is expected as another treatment choice for patients with DMD having tachycardia.

    Download PDF (1128K)
  • Kohei KAWAKAMI, Hiroyuki MATSUO, Naoyo KAJITANI, Ken-ichi MATSUMOTO
    Article type: Original
    Article ID: 23-0069
    Published: 2023
    Advance online publication: October 12, 2023
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION

    Genetic and environmental factors interact in a complex manner in the pathogenesis of essential hypertension in humans. Oxidative stress is considered one of the more important environmental factors. We used the spontaneously hypertensive rat (SHR) model to test whether continuous feeding with the antioxidant tempol reduces maternal oxidative stress during pregnancy and potentially contributes to the prevention of cardiovascular disease onset. Pregnant female rats were divided into control and tempol-treated groups. Tempol was continuously administered in the drinking water. The administration period lasted approximately 40 days from the confirmation of a vaginal plug until birth of the pups and their subsequent weaning. The blood pressure (BP) of each adult female was measured three times during pregnancy and post parturition. Milk was collected three times in the immediate postpartum period from nursing mother rats. Markers of oxidative stress were measured: 8-hydroxyl-2′-deoxyguanosine (8-OHdG) levels in milk during the experimental period, 8-OHdG levels and corticosterone levels in urine of adult and neonatal rats. The urinary level of 8-OHdG in the tempol-treated group was significantly lower than in the control group. Corticosterone levels were significantly lower in urine of neonatal rats from the tempol-treated group compared to the control group. 8-OHdG and corticosterone levels in milk of the tempol-treated group were significantly greater than in the control group. This study demonstrates that continuous administration of tempol to pregnant SHRs reduced maternal oxidative stress and contributed to reduced oxidative stress in neonatal rats.

    Download PDF (288K)
  • Gisele Henrique Cardoso MARTINS, Juliete PALANDI, Vitória Helena Kuhn ...
    Article type: Review
    Article ID: 19-0140
    Published: 2020
    Advance online publication: March 23, 2020
    JOURNAL OPEN ACCESS ADVANCE PUBLICATION
    This article released online on March 23, 2020 as advance publication was withdrawn from consideration for publication in Experimental Animals at author’s request.
    Download PDF (1496K)
feedback
Top