We prove the existence of ground states for the semi-relativistic Schrödinger-Poisson-Slater energy
$$I^{\alpha,\beta}(\rho)=\inf_{\substack{u\in H^\frac 12(\mathbb R^3)\\\int_{\mathbb R^3}|u|^2 dx=\rho}} \frac{1}{2}\|u\|^2_{H^\frac 12(\mathbb R^3)}+\alpha\int\int_{\mathbb R^{3}\times\mathbb R^{3}} \frac{|u(x)|^{2}|u(y)|^2}{|x-y|}dxdy-\beta\int_{\mathbb R^{3}}|u|^{\frac{8}{3}}dx$$
α, β > 0 and ρ > 0 is small enough. The minimization problem is
L2 critical and in order to characterize the values α, β > 0 such that
Iα,β(ρ) > -∞ for every ρ > 0, we prove a new lower bound on the Coulomb energy involving the kinetic energy and the exchange energy. We prove the existence of a constant
S > 0 such that
$$\frac{1}{S}\frac{\|\varphi\|_{L^\frac 83(\mathbb R^3)}}{\|\varphi\|_{\dot H^\frac 12(\mathbb R^3)}^\frac 12}\leq \left (\int\int_{\mathbb R^3\times \mathbb R^3} \frac{|\varphi(x)|^2|\varphi(y)|^2}{|x-y|}dxdy\right )^\frac 18$$
for all φ ∈
C0∞(
R3). Besides, we show that similar compactness property fails if we replace the inhomogeneous Sobolev norm ||
u||
2H1/2(R3) by the homogeneous one ||
u||
$\dot{H}$1/2(R3) in the energy above.
View full abstract