CHROMATOGRAPHY
Online ISSN : 1348-3315
Print ISSN : 1342-8284
Search
OR
Browse
Search
Current issue
Showing 1-6 articles out of 6 articles from the selected issue
    • |<
    • <
    • 1
    • >
    • >|
Reviews
  • Yukihiro OKAMOTO
    Volume 39 (2018) Issue 1 Pages 1-6
    Released: March 08, 2018
    [Advance publication] Released: February 07, 2018
    JOURNALS FREE ACCESS

    This review focuses on researches regarding separation sciences utilizing the specific properties of microscopic separation fields. One of the topics is related to the separation by capillary electrophoresis (CE). Despite of its superior performances, CE still has major problems to be overcome such as non-specific interactions between capillary surfaces and samples, difficulty in fabricating stationary phases inside micrometer-sized capillaries, and its lower sensitivity. Therefore, in this first section, to resolve these problems, our obtained knowledge and developed methods were introduced. By our obtained knowledge and developed methods, following separations were attained; (i) the charge/size separation of cationic particles as cationic species by CE, (ii) an easy fabrication method of stationary phases in micrometer-sized capillaries, which enables high reproducible chiral separations in packed capillary electrochromatography, and (iii) high selective separation and high sensitive detection of proteins with multi-functional particles. In the second section, “Lipid Nanotechnology” for separation sciences was mentioned. “Lipid nanotechnology” is a technique utilizing superior properties of lipid self-assembled structures for separation. For establishment of separation methods with lipid nanotechnology, characterization methods for separation field, lipid self-assembled structures were described. Then, some our results of separation with lipid nanotechnology were introduced, especially emergence of chiral recognition in lipid bilayer by polymerization, the application of lipid self-assembled structures for flow separation systems, and membrane proteins separation in lipid nano-membrane.

    View full abstract
    Download PDF (1883K)
  • Noritaka HASHII, Masahiro UTOH, Yoshiaki OHTSU, Nozomu KATO, Ryoya GOD ...
    Volume 39 (2018) Issue 1 Pages 7-19
    Released: March 08, 2018
    [Advance publication] Released: December 22, 2017
    JOURNALS FREE ACCESS

    Liquid chromatography/mass spectrometry (LC/MS) method is becoming an important approach for therapeutic antibody assays as an alternative to the ligand-binding assay (LBA) method. The LC/MS method has some advantages over the LBA method, such as a wider dynamic range and short developing time. However, the development of the LC/MS method is often challenging because of complicated sample preparation processes involving affinity purification, denaturation, reduction and methylation, enzymatic digestion, and peptide purification. In addition, it is difficult to select a sensitive and specific surrogate peptide that allows the determination of the lower limit of quantitation of the analytical target. Another issue remains in the bioanalytical method validation (BMV) of the LC/MS method for large molecules. The BMV guideline on the LC/MS method for small molecules and that on the LBA method are helpful while developing a bioanalytical method for large molecules using LC/MS; however, these guidelines lack inherent characteristics related to bioanalysis of large molecules by the LC/MS method. In this review, we describe points to be considered regarding selection of surrogate peptides and optimization of the sample preparation processes in the LC/MS method for therapeutic antibody assays. Furthermore, we propose criteria for BMV of the LC/MS method. We expect that this review will aid in the development of sensitive, specific, and robust bioanalytical LC/MS methods for therapeutic antibodies.

    View full abstract
    Download PDF (2902K)
Original Papers
  • Tomohiro YAMADA, Hajime MIZUNO, Jun Zhe MIN, Toshimasa TOYO’OKA, Kenic ...
    Volume 39 (2018) Issue 1 Pages 21-26
    Released: March 08, 2018
    [Advance publication] Released: October 16, 2017
    JOURNALS FREE ACCESS

    We optimized several analytical conditions for more sensitive and precise HT-RPLC analysis of the therapeutic monoclonal antibody (mAb), bevacizumab. Specifically, we (1) optimized the sample preparation process to reduce adsorption and aggregation of bevacizumab, (2) introduced a sample concentration process using a centrifugal ultrafiltration unit to increase detection sensitivity, and (3) used another therapeutic mAb as an internal standard to improve analytical precision. The optimized method for bevacizumab analysis was shown to have low detection and quantification limits of 0.010 and 0.032 µg/mL, respectively, good correlation coefficients (r2 > 0.9997), and good intra- and inter-day precisions within < 12.0 %. This study provides an important methodology for the intact bioanalysis of therapeutic mAbs, not merely their LC measurement.

    View full abstract
    Download PDF (1206K)
  • Ikuo UETA, Hiroto FUJIKAWA, Koji FUJIMURA, Tomotaka YOSHIMURA, Shoji N ...
    Volume 39 (2018) Issue 1 Pages 27-32
    Released: March 08, 2018
    [Advance publication] Released: October 26, 2017
    JOURNALS FREE ACCESS

    In this study, the quantitative determination of gaseous biogenic volatile organic compounds (BVOCs) including monoterpenes and sesquiterpenes was accomplished using a solid-phase extraction-type collection device. The collection device was fabricated by packing styrene-divinylbenzene polymer particles into a specially designed glass cartridge. The retention performance of the collection device for BVOCs was quantitatively evaluated at 35°C with different volumes of air samples. The device showed good retention performance for the investigated BVOCs, that is, no breakthrough occurred for monoterpenes up to an air sampling volume of 150 L or for sesquiterpenes up to a sampling volume of 30,000 L. The elution performance was evaluated by passing organic solvents into the collection device, and an excellent elution recovery was obtained with 10 mL dichloromethane. Finally, the analytical method using the collection device was applied to determine the gaseous monoterpenes and sesquiterpenes from a grated carrot and the air inside a wooden house, and the results demonstrated the applicability of the method for the quantitative determination of BVOCs in several sample matrices.

    View full abstract
    Download PDF (1300K)
  • Youji SHIMAZAKI, Kosuke TANAKA, Keisuke SAKATA
    Volume 39 (2018) Issue 1 Pages 33-39
    Released: March 08, 2018
    [Advance publication] Released: December 29, 2017
    JOURNALS FREE ACCESS

    Reversible inhibition of enzymes is caused by association and dissociation between enzymes and inhibitors. Therefore, reversible inhibitors can be trapped and extracted using enzyme-inhibitor interaction. The purpose of this study was to establish a method in which the reversible inhibitors retaining the original inhibitory activities are extracted from a single drop of biological sample using the enzyme-inhibitor interaction on the surface of a membrane. A membrane-immobilized carboxypeptidase Y (CPY) was produced after the biotinylated CPY was bound to the avidin separated by nondenaturing electrophoresis, transferred to a polyvinylidene fluoride and stained by Ponceau S. Ovomucoid, possessing reversible CPY inhibitory activity, was trapped and extracted from a single drop of egg white and isolated using the membrane-immobilized CPY. The isolated ovomucoid using this membrane-immobilized CPY possessed a feature that more than 85 % of the relative carboxylesterase activity was suppressed. The results indicate that ovomucoid retaining enzyme inhibitory activities can be isolated from a single drop of egg white sample using enzyme-immobilized membrane.

    View full abstract
    Download PDF (1679K)
  • Masamitsu MAEKAWA, Masaru MORI, Masachika FUJIYOSHI, Hisaki SUZUKI, Ka ...
    Volume 39 (2018) Issue 1 Pages 41-47
    Released: March 08, 2018
    [Advance publication] Released: January 31, 2018
    JOURNALS FREE ACCESS

    A highly sensitive and reliable analytical method that uses liquid chromatography/electrospray ionization tandem mass spectrometry coupled with a simple on-line solid-phase extraction was developed to monitor occupational exposure by measuring cyclophosphamide in the urine of medical staffs who handle this anticancer drug. The quantitation limit is 3 pg/mL with a signal-to-noise ratio of more than 10, and the measurement range is 3 pg/mL to 3 ng/mL. Using this method, trace levels of cyclophosphamide have been detected in the urine of two pharmacists after handling this anticancer drug during more than 4 years exposure survey. This finding strongly suggests that it is very important to monitor the occupational exposure of medical staffs who handle anticancer drugs in order to assess the health hazard and control the use of these chemotherapies. These data also show that this analytical method can be successfully used to monitor occupational exposure by measuring the levels of residual cyclophosphamide in human urine.

    View full abstract
    Download PDF (1204K)
    • |<
    • <
    • 1
    • >
    • >|
feedback
Top