Journal of Reproduction and Development
4,062 registered articles
(updated on March 01, 2024)
Online ISSN : 1348-4400
Print ISSN : 0916-8818
ISSN-L : 0916-8818
JOURNAL PEER REVIEWED OPEN ACCESS ADVANCE PUBLICATION
DOAJ Scopus Pubmed
Featured article
Volume 70 (2024) Issue 1 Pages 1-9
Improvements in in vitro spermatogenesis: oxygen concentration, antioxidants, tissue-form design, and space control Read more
Editor's pick

Cover Story:
For the past century, achieving in vitro spermatogenesis has remained a difficult challenge for researchers. In 2011, Ogawa et al. successfully demonstrated in vitro spermatogenesis in mice using an organ culture method. However, extending this method to other species posed challenges for over a decade. In 2023, Ogawa’s team achieved in vitro spermatogenesis in rats by incorporating several critical modifications to enhance their original technique. This review presents a detailed analysis by Ogawa et al. comparing their method with natural in vivo conditions and other synthetic alternatives (Ogawa et al. Improvements in in vitro spermatogenesis: oxygen concentration, antioxidants, tissue-form design, and space control, pp. 1–9). They systematically explore the merits, limitations, and inherent constraints of the organ culture approach, delving into the specifics of medium composition, the principles of the gas-liquid interphase method, use of microfluidic devices, and innovation of the PDMS-ceiling method. Highlighting the challenges faced, including regulating oxygen concentration, managing tissue formation, and regulating culture space-control. The insights and novel concepts shared in this review are particularly valuable for those involved in culture or related disciplines, providing innovative content, and encouraging further exploration in this field.

Volume 69 (2023) Issue 6 Pages 308-316
Fluctuation of CD9/SOX2-positive cell populations during the turnover of GH- and TSH-producing cells in the adult anterior pituitary gland Read more
Editor's pick

Cover Story:
Cluster of differentiation 9 (CD9) and sex-determining region Y-box 2 (SOX2) positive cells are stem/progenitor cells for hormone-producing cells in the anterior lobe (AL) of the rat pituitary gland. They are located in the marginal cell layer (MCL) facing the Rathke’s cleft between the AL and intermediate lobe (IL) and the parenchyma of the AL. Horiguchi et al. reported that CD9/SOX2-positive stem cells in the AL-side MCL have potential to supply growth hormone (GH) cells when the increase in GH cell population is required, and the AL parenchyma cells may respond to the demand of thyroid-stimulating hormone (TSH) cell supply in the adult pituitary. (Horiguchi et al. Fluctuation of CD9/SOX2-positive cell population during turnover of GH- and TSH-producing cells in adult anterior pituitary gland, pp. 308–316). These findings may provide one of the mechanisms by which hormone producing cells form from adult stem cells in the pituitary.

Volume 69 (2023) Issue 5 Pages 227-238
Sex difference in developmental changes in visualized Kiss1 neurons in newly generated Kiss1-Cre rats Read more
Editor's pick

Cover Story:
Hypothalamic kisspeptin neurons are master regulators of mammalian reproduction. Yamada et al. generated novel Kiss1 (kisspeptin gene)-Cre rats and investigated the developmental changes and sex differences in visualized Kiss1 neurons of Kiss1-Cre-activated tdTomato reporter rats (Yamada et al.; Sex difference in developmental changes in visualized Kiss1 neurons in newly generated Kiss1-Cre rats, p. 227–238). Histological analysis revealed that Kiss1 neurons, which were visualized by tdTomato, were sexually dimorphic in the anteroventral periventricular nucleus (AVPV), arcuate nucleus, and medial amygdala. As shown on the cover page, neonatal AVPV visualized Kiss1 neurons were detected only in males (upper left; compared to the AVPV in neonatal females on the upper right), but a larger number of visualized Kiss1 neurons were detected in the AVPV in females (lower right) than in males (lower left) in adulthood. The Kiss1-Cre and Kiss1-visualized rats could be valuable tools for further detailed analyses on the sexual differentiation and physiological role of kisspeptin neurons.

View all featured articles
Most viewed articles (February 2024)
Share this page
Browse by volume and issue
feedback
Top