Journal of Smooth Muscle Research
Online ISSN : 1884-8796
Print ISSN : 0916-8737
ISSN-L : 0916-8737
Volume 38, Issue 6
Displaying 1-2 of 2 articles from this issue
Originals
  • Hikaru Suzuki, Yoshihiko Kito, Hiroyasu Fukuta, Yoshimichi Yamamoto
    Article type: Original
    Subject area: none
    2002 Volume 38 Issue 6 Pages 153-164
    Published: 2002
    Released on J-STAGE: March 08, 2003
    JOURNAL FREE ACCESS
    In small segments of circular smooth muscle isolated from the guinea-pig gastric antrum, the effects of RHC-80267, an inhibitor of diacylglycerol lipase, were investigated both on regenerative slow potentials (either occurring spontaneously or as the result of a depolarizing intracellular current injection) and on the actions of acetylcholine (ACh). As diacylglycerol is a known activator of protein kinase C (PKC), it would therefore be expected that RHC-80267 would activate PKC indirectly. In circular smooth muscle bundles, spontaneously generating slow potentials recorded simultaneously from two given cells were synchronized, indicating that these two cells were electrically coupled. RHC-80267 (0.3-1 μM) increased the frequency of slow potential generation, with no alteration to the amplitude of either the slow potentials or the resting membrane potential. Synchronous electrical activity in a given pair of cells was also unchanged by RHC-80267, indicating that intercellular electrical coupling was not altered. The input resistance of smooth muscle cells calculated from the amplitude of electrotonic potentials produced by injection of current was not significantly altered by RHC-80267. The refractory period for the generation of slow potentials evoked by depolarizing stimuli was about 8 s, and it was decreased to about 5 s by RHC-80267, with no significant alteration to the amplitude of spontaneous or evoked slow potentials. ACh (0.5 μM) depolarized the membrane by about 5 mV and increased the amplitude and frequency of slow potentials. The actions of ACh on the frequency of slow potentials were enhanced by RHC-80267, with no alteration to the amplitudes of both the ACh-induced depolarization and slow potentials. These results support the idea that PKC is involved in determining the frequency of slow potentials, by shortening the refractory period for excitation of gastric smooth muscle cells.
    Download PDF (142K)
  • Yoshihiko Kito, Hikaru Suzuki, Frank R. Edwards
    Article type: Original
    Subject area: none
    2002 Volume 38 Issue 6 Pages 165-179
    Published: 2002
    Released on J-STAGE: March 08, 2003
    JOURNAL FREE ACCESS
    Intracellular recordings were made from myenteric interstitial cells of Cajal (ICC-MY) distributed in the guinea-pig gastric antrum to investigate the properties of unitary potentials. In most cells studied, pacemaker potentials with initial fast transient and following plateau components were generated periodically, and intervals between the potentials were quiescent. However, there were few cells (less than 5% of cells examined) which showed discharge of unitary potentials spontaneously in the intervals between pacemaker potentials. The amplitude and frequency of unitary potentials appeared to be random variables, as observed in isolated circular smooth muscle bundles of the guinea-pig gastric antrum. BAPTA-AM (an intracellular Ca2+ chelator) or papaverine (a non-selective phosphodiesterase inhibitor) reduced the discharge frequency of unitary potentials, with associated decrease in the frequency of pacemaker potentials. These agents finally abolished both unitary potentials and pacemaker potentials. In preparations showing no detectable generation of unitary potentials, depolarization of the membrane with high-K solution ([K+]o = 10.6 mM) elicited generation of unitary potentials during intervals between pacemaker potentials. Pinacidil (an opener of KATP-channels) hyperpolarized the membrane and increased the frequency and amplitude of unitary potentials with no alteration to the relationship between the amplitudes of unitary potentials and their half-widths. These results suggest that the elevation of intracellular Ca2+ concentration is causally related to the generation of unitary potentials in pacemaker cells. They are consistent with the proposition that the depolarization produced by a burst of unitary potentials triggers the primary component of pacemaker potentials in ICC-MY, which induces a release of Ca2+ from inositol 1,4,5-trisphosphate (IP3)-sensitive internal stores and then activates Ca2+-sensitive Cl--channels to form the plateau component. Similarities and differences in unitary potentials between circular muscle and pacemaker cells are discussed.
    Download PDF (191K)
feedback
Top