Mechanical Engineering Journal
Online ISSN : 2187-9745
Search
OR
Browse
Search
Current issue
Showing 1-16 articles out of 16 articles from the selected issue
    • |<
    • <
    • 1
    • >
    • >|
Recent Advances in Materials and Processing 2017
  • Hiroshi ASANUMA
    Volume 5 (2018) Issue 2 Pages 18preface1
    Released: April 15, 2018
    JOURNALS FREE ACCESS
    Download PDF (568K)
  • Daiki ICHIKAWA, Tohru MORII, Hiroyuki HAMADA, Akio OHTANI
    Volume 5 (2018) Issue 2 Pages 17-00445
    Released: April 15, 2018
    [Advance publication] Released: December 11, 2017
    JOURNALS FREE ACCESS

    In recent years, due to its high specific stiffness and strength, fiber reinforced plastics (FRP) are being used in aerospace components, automobile components, sports equipment, and in various other applications. Especially since composite laminates have superior mechanical properties, there is a high demand for their use as structural materials. However, mechanical properties in the out-of-plane direction of composite laminates, specifically the interlaminar strength and fracture toughness, are much weaker than those in the in-plane direction. This study focuses on the needle punch techniques that aim to improve composite properties in the out-of-plane direction. This technique is typically used for fabricating non-woven fabrics. Fiber webs were punched by a plate containing many special needles with many barbs. A portion of fibers in the in-plane direction were aligned in the out-of-plane direction. In this study, the needle punch process is applied on chopped strand mats. Static tensile tests, fatigue loading tests, and residual strength tests are performed. Tensile properties, residual strength properties and fracture mechanisms of FRPs with needle-punched chopped strand mats are investigated.

    View full abstract
    Download PDF (2949K)
  • Tomohiro TAKAKI, Kazuhiko KITAMURA, Junichi SHIBATA
    Volume 5 (2018) Issue 2 Pages 17-00449
    Released: April 15, 2018
    [Advance publication] Released: January 10, 2018
    JOURNALS FREE ACCESS

    Galling and wear have been a tribology problem in sheet metal forming of stainless steel. Although lubrication oil with chlorinated extreme pressure (EP) additives have been used, environmental and safety issues have demanded not to use chlorinated EP additives. For developing chloride-free oil for cold ironing of stainless steels, some commercial sulfur-based EP additives were evaluated by a cup internal ironing test. Moreover, the superior sulfur-based EP additive was combined with calcium- and zinc-base type additives in order to improve anti-galling performance. The mixture oil, as shown the high performance in the cup internal ironing test, successively passed a 10,000 shots practical process with severe ironing of stainless steel. After the 10,000 shots, it was found that no galling was observed on these 10,000 products. Based on the X-ray photoelectron spectroscopy (XPS) results, sulfide and calcium carbonate were formed on the surface of the products. This lubricating film seems to prevent galling in the practical process. The developed oil is an example of a chloride-free oil to replace the conventional chloride-containing oil.

    View full abstract
    Download PDF (991K)
  • Tadayoshi SHOYAMA, Koji FUJIMOTO
    Volume 5 (2018) Issue 2 Pages 17-00444
    Released: April 15, 2018
    [Advance publication] Released: January 17, 2018
    JOURNALS FREE ACCESS

    Determination and prediction of the dynamic properties of an O-ring for bearing support were performed. Utilizing O-rings as supporters of bearing is a promising way to suppress severe vibrations such as resonance and self-excited whirl experienced in high-speed turbo machinery. However, analytical prediction of the dynamic properties of O-rings has not been very successful so far because of its non-linear dependence on many parameters. In this study, focusing on the incompressibility of rubber materials, the isochoric shear viscoelasticity of an O-ring material was measured for high frequencies of up to 1 kHz. In measuring the viscoelasticity, a testing method developed by the authors was used. This method enables obtaining high-frequency shear viscoelasticity directly without assuming the temperature-frequency superposition principle. The obtained dynamic shear properties were modeled as functions of the frequency and hydrostatic pressure. Finite element models of squeezed O-rings were constructed with the material model assuming uniform property distribution, and dynamic analyses were conducted. The dynamic properties of O-rings were determined from the time-series data for the applied force and displacement. The data agreed with the experimental results of an actual O-ring. It was found that the dynamic properties of rubber components can be analytically predicted by considering the frequency and hydrostatic pressure dependence on the viscoelasticity.

    View full abstract
    Download PDF (1839K)
  • Hideo CHO, Kanami YAMAMOTO, Kojiro NISHIMIYA, Hiroaki ITO
    Volume 5 (2018) Issue 2 Pages 17-00568
    Released: April 15, 2018
    [Advance publication] Released: February 27, 2018
    JOURNALS FREE ACCESS

    The integrity of flange joints is critical in all pipe systems. To test this integrity, an ultrasonic method characterizing the condition of the flange joint would be a vital tool. In this study, we analyzed the contact conditions on a metal/gasket/metal connection. The instantaneous frequency profile, i.e., the phase change of the wave with time for longitudinal waves transmitted in an Al alloy/gasket/Al alloy system, was evaluated under various contact pressures. The instantaneous frequency (IF) was calculated with a complex continuous wavelet transform with a modified Morlet function as a mother wavelet. The maximum IF of the waves monotonically increased with contact pressure, showing similar properties as the amplitude of the waves. A one-dimensional numerical calculation with a finite difference time domain method with a spring condition for expressing various contact conditions or contact stiffness revealed that a large phase delay of the transmission wave was generated at a low contact stiffness interface, and the amount of delay was correlated with the contact stiffness. On the other hand, the delay in the reflected wave was very small.

    View full abstract
    Download PDF (1815K)
  • Tetsuro YANASEKO, Hiroshi SATO, Isao KUBOKI, Hiroshi ASANUMA
    Volume 5 (2018) Issue 2 Pages 17-00565
    Released: April 15, 2018
    [Advance publication] Released: February 28, 2018
    JOURNALS FREE ACCESS

    Effect of the microstructure of a metal-core piezoelectric fiber/aluminum composite on the characteristics of its output voltage was investigated. The metal-core piezoelectric fiber/aluminum composite was developed to overcome the problems associated with piezoelectric ceramics, such as has poor mechanical properties, reliability; brittleness and low fracture strain. This composite contains piezoelectric fiber embedded in aluminum matrix by using interphase forming/bonding method, which significantly improved the fracture strain of the metal-core piezoelectric fiber. The composite is expected to be used in long-term, high reliability sensors and energy harvesting devices. However, it was observed that the output voltage variation is caused by the residual Al-Cu eutectic alloy from the embedding process and contributes to the eccentricity of the core. These drawbacks, interfere with the practical use of this composite. In this study, the influence of the composite microstructure, such as the presence of the residual eutectic alloy and the eccentricity of the metal-core on the output voltage characteristics, is evaluated using finite element analysis. First, it was succeeded establishing a method considering that the radial direction of polarization, and confirmed the validity of the proposed method by reproducing the output voltage anisotropy of the composite and comparing the experimental values obtained in conventional studies with analysis value. Using this method, it was shown that the decrease of the output voltage is caused by the following; 1) The eutectic alloy having a high Young's modulus inhibits the stress transmission between the matrix and the piezoelectric ceramics, the stress of the piezoelectric ceramics decreases, 2) Eccentricity of the core lowers the stress in the portion where the piezoelectric constant is high near the core. From these results, possibility of design and suppress variations of the output voltage characteristics by adjust the structure of the composite was suggested.

    View full abstract
    Download PDF (1693K)
  • Masaaki KIMURA, Yuusuke INUI, Masahiro KUSAKA, Koichi KAIZU
    Volume 5 (2018) Issue 2 Pages 17-00398
    Released: April 15, 2018
    [Advance publication] Released: March 23, 2018
    JOURNALS FREE ACCESS

    This paper described the tensile strength of friction welded joint between Al-Mg alloy (JIS A5052) and pure copper (OFC). In particular, the joining phenomena during the friction process and the effects of friction welding condition such as friction pressure, friction time and forge pressure on the joint strength have been investigated, and the metallurgical characteristics of joints have been also observed and analyzed. The adjacent region of the weld interface at the A5052 side was upset during the friction process, although that of the OFC side was hardly upset. When the joint was made with a friction pressure of 30 MPa, all joints fractured at the weld interface because those joints had the not-joined region at this portion. To reduce the not-joined region, the joint was made with increasing forge pressure. All joints did not have a joint efficiency of 100% (same tensile strength as the A5052 base metal) and the fracture on the A5052 base metal without crack at the weld interface, although the joint efficiency increased with increasing forge pressure. It was showed that the joint had the mechanically mixed layer as the lamellar structures of A5052 and OFC on the adjacent region of the weld interface at the A5052 side, and that layer influenced to the fractured point of the joint. The mechanically mixed layer decreased with decreasing friction time and with decreasing friction pressure after the initial peak. Then, the joint, which had the same tensile strength as the A5052 base metal, the fracture on the A5052 base metal with no crack at the weld interface, and less mechanically mixed layer with no the intermetallic compound (IMC) interlayer on the weld interface, could be successfully achieved. In conclusion, it was suggested that the joint should be made with a low friction pressures such as 20 MPa to prevent generating of the mechanically mixed layer, an opportune friction time such as 6.0 s without generating the IMC interlayer, and a high forge pressure such as 240 MPa in order to achieve completely joining of the weld interface and the fracture on the A5052 base metal.

    View full abstract
    Download PDF (6648K)
  • Takahiro OHASHI, Hamed MOFIDI TABATABAEI, Tadashi NISHIHARA
    Volume 5 (2018) Issue 2 Pages 17-00496
    Released: April 15, 2018
    [Advance publication] Released: March 23, 2018
    JOURNALS FREE ACCESS

    In this paper, the authors discuss dissimilar materials joining structures fabricated by friction-stir forming (FSF) and easily decomposable. Dissimilar-materials-joining has been successfully studied as a key for new producing light-weight parts; however, it can be a barrier to recycling in the future. The authors suggested the concept of easily separable joining of dissimilar materials employing friction-stir forming (FSF). A joined plate having a keyhole was prepared and put into a mold having a hook cavity. An aluminum alloy plate was put on and friction stirring was conducted on its back surface. Due to the massive heat and compression force generated by the friction stirring, a hook-like joint was successfully generated, and the substrate and joined member are sheared to disconnect them by hitting with a plastic hammer; however no room was observed between the hook and joined material after forming. Opposite hooks generated by the above approach join dissimilar materials tightly, but the materials can be separated smoothly after cutting them between the hooks. In the experiment, a pair of a 0.8mm-thick JIS SPCC steel sheets and a 3mm-thick JIS A5083P-O aluminum alloy plate was joined. The authors evaluated the joints by tensile and shear tests and discuss their mechanical behavior and failure. The tensile strength of the joint was 652N (average). In the tensile tests, the deformation of the keyhole of 0.8mm-thick SPCC steel sheet caused the failure of the joint. The shear strength was affected by the shear direction, i.e. 1010N at 0deg, 705N at 45deg, and 1320N at 90deg (average) for the connecting line between hooks. It was thought that the hook-like joints had enough strength for the cross-sectional area of their stems (i.e. 4.16mm2).

    View full abstract
    Download PDF (1258K)
  • Takahiro YAMAZAKI, Takahisa YAMAMOTO, Yasubumi FURUYA, Wataru NAKAO
    Volume 5 (2018) Issue 2 Pages 17-00569
    Released: April 15, 2018
    [Advance publication] Released: April 09, 2018
    JOURNALS FREE ACCESS

    The use of inverse magnetostriction effect is a possible approach for the applications of actuator, sensor and energy harvester. A strong textured Fe100-xCox (x = 70 mol%) magnetostrictive alloys have been studies as a new smart material. The design of microstructure plays important roles in performance enhancement of power generation by heat-treatment at several temperatures from 420℃ to 850℃. Experimentally, the effect of heat-treatment on their microstructures was evaluated by laser microscope and X-ray diffraction and orientation analysis. Furthermore, the magnetic, magnetostrictive and electric power generation characteristics were investigated by vibrating sample magnetometer (VSM), single-axis strain gauge and drop impact test, respectively. These results indicated the lattice strain in the crystal grain was related to the coercivity resulting from the domain wall mobility in the materials. Moreover, the orientation aligned by the drawing process was related to the magnetostriction. Also, the large grain width, that is, low grain boundary density was strongly attributed to enhance the magnetostrictive susceptibility. The output power calculated from the output waveform was reached up to 91 mJ/s for 820℃-WQ (water quenching) resulting from the high magnetostrictive susceptibility as well as the quenching effect from the temperature near the (bcc + fcc)/bcc interface. These results indicated that it is important to control not only the annealing conditions for improving magnetostrictive susceptibility but also the control of residual stress or grain boundary density for developing higher performance of output characteristics.

    View full abstract
    Download PDF (1487K)
  • Tsutomu UMEDA, Koji MIMURA
    Volume 5 (2018) Issue 2 Pages 17-00571
    Released: April 15, 2018
    [Advance publication] Released: April 13, 2018
    JOURNALS FREE ACCESS

    The dynamic axially crushing behavior of metal honeycombs was studied with placing emphasis on the effects of boundary condition and cell structure on its characteristics as an energy absorber. Numerical honeycomb models of some metal foil materials were made by taking the plastic deformation of adhesive layer, the failure of adhesively-bonded joint and the initial imperfection into account. Then, firstly, the foil material and the branch angle φ of cell geometry were varied to examine the effects on the crushing behavior and the energy absorption capacity. Secondly, to investigate the effects of boundary condition on the crushing mode and the energy absorption capacity, some boundary conditions such as the fixed end condition, the contact condition at the upper and lower ends and the periodic boundary condition at the side surfaces were applied to the honeycomb model. Typical calculated results under different strain rates and geometric conditions were compared with the corresponding experimental results, and the effects of material properties on the mean buckling stress were discussed. It was found that for the material with strain rate dependence, the stress increment of crushing honeycomb due to increasing the strain rate was 30-40 % as large as that of the material itself. Small φ causes different deformation mode of wrinkles, and the mean buckling stress σm decreased about 50 % by changing φ from 120° to 30°. Furthermore, small-scale honeycomb with small φ is easy to be affected by free edges considerably at φ = 60°. The oblique loading condition caused the transition from axial collapse to bending collapse so that at the crush angle of 45° σm became 30-50 % smaller than that under the vertical loading condition, while the effect of the direction of oblique load on σm is not so large.

    View full abstract
    Download PDF (22650K)
Solid Mechanics and Materials Engineering
  • Masatsugu ARAI
    Volume 5 (2018) Issue 2 Pages 17-00384
    Released: April 15, 2018
    [Advance publication] Released: February 26, 2018
    JOURNALS FREE ACCESS

    Three silicon-nitride (Si3N4) ceramic specimens (differing in terms of sintering additive and bending strength) were corroded and tested in 3-mol/L-HCl aqueous solutions at 80°C for 1500 h. The corrosion resistance of each specimen was evaluated by measuring weight loss and bending strength of the specimens before and after the immersion tests. The corroded and fractured surfaces of the specimens were observed by SEM. When the specimens were soaked in the aqueous HCl solutions, weight loss and bending strength decreased with immersion time. Moreover, after immersion, the color of a layer in the fractured section (called “discolored layer” hereafter) changed, and the layer became thicker with immersion time. The discolored layer included a corroded layer at the point of contact with the corrosion solution (where grain boundaries were eluted). The correlation between corroded-layer thickness and weight loss and that between bending strength and weight loss were both found to be linear. However, the gradients of those correlations for each test specimen were found to differ, so it is difficult to summarize these correlations with one linear mathematical expression. Measured bending strength and bending strength predicted using fracture toughness (KIC) of the Si3N4-ceramic specimens and crack length were found to be closely related. In this prediction, the corroded-layer thickness of the specimens immersed in HCl solutions was considered to be equivalent to the diameter of semi-circular surface cracks.

    View full abstract
    Download PDF (1949K)
  • Chanh Nghia NGUYEN, Yu KUROKAWA, Hirotsugu INOUE
    Volume 5 (2018) Issue 2 Pages 17-00585
    Released: April 15, 2018
    [Advance publication] Released: February 27, 2018
    JOURNALS FREE ACCESS

    Surface texture is an important parameter which affects functions and performance of industrial components. Although stylus and optical techniques are commonly used for evaluating the surface topology, they are applicable only to accessible surfaces. In practice, the geometrical features measurement of inaccessible surfaces from back side is sometimes demanded, for example, in inspection of safety-critical parts such as inner surfaces of pipes. For evaluating such internal surfaces, ultrasonic technique is one of the most effective among others. However, little attention has been paid to the evaluation of inaccessible periodic surfaces so far. In this paper, an ultrasonic pulse-echo technique, namely, master curve technique is developed for evaluating the pitch and the height of periodic triangular surfaces which is inaccessible or hidden on the back side. It is found that 60° of incident angle is appropriate for the development of the master curve equation to compromise between the resolution of measurement and the measurable range of the height-to-pitch ratio. By using P-wave at 60° of incidence angle, the pitch of the surface profile is evaluated from the classical diffraction grating equation, and then the height is evaluated by the master curve equation built from numerical simulation. The validity of the proposed method was verified by both numerical simulation and experiment. It was confirmed that the pitch is accurately measured in most cases. The height was also evaluated with good accuracy when it is smaller than a half of the pitch.

    View full abstract
    Download PDF (1192K)
  • Tadaharu ADACHI, Zoltan MAJOR, Kenji FUJII, Kohei MIKUMA, Markus Karam ...
    Volume 5 (2018) Issue 2 Pages 17-00529
    Released: April 15, 2018
    [Advance publication] Released: March 15, 2018
    JOURNALS FREE ACCESS

    A dynamic double torsion testing machine and measurement system were developed on the basis of the split Hopkinson pressure bar test and the theoretical one-dimensional wave propagation in the input and output bars, and their validity was confirmed by measuring the dynamic fracture toughnesses of non-stoichiometrically cured epoxy resins. The applicable range of the stress intensity factor, as formulated by Fuller was determined from the specimen shape and loading conditions for the dynamic double torsion test. The available crack length was found to be below 70% of the specimen length by measuring the static fracture toughness and analyzing the natural frequency of the specimen. The duration of the impact force until dynamic fracture in the dynamic double torsion test was found to be longer than the reciprocal of the lowest natural frequency of the out-of-plane bending mode of the specimen, as expressed by an approximate equation. Because the mechanical properties of the epoxy resin had little dependency on time in the experiments at room temperature, the validity of the testing machine and measuring system were able to be confirmed by comparing the dynamic and static fracture toughnesses of the epoxy resins and observing the fracture surfaces.

    View full abstract
    Download PDF (1069K)
  • Hiroko NAKANO, Noriaki HIROTA, Hiroshi SHIBATA, Tomoaki TAKEUCHI, Kuni ...
    Volume 5 (2018) Issue 2 Pages 17-00594
    Released: April 15, 2018
    [Advance publication] Released: March 16, 2018
    JOURNALS FREE ACCESS

    In-pile instrumentation systems in present-day light water reactors (LWR) are indispensable to monitor all situations during reactor operation and reactor shut down. However, the systems did not work sufficiently well in situations like the severe accident (SA) at the Fukushima Dai-ichi nuclear power station. Thus, it is necessary to develop monitoring systems for the prevention of injuries in the event of an SA. Mineral-insulated (MI) cables with radiation and heat resistance are exposed to a mixture gas including nitrogen, oxygen, hydrogen, water vapor, and fission products at high temperature under SA conditions. In this study, corrosion tests under the simulated SA conditions (air, air/H2O, and I2/CO/O2/H2O) for temperatures up to 1015°C were performed for candidate sheath materials of type 316 stainless steel (316SS) and nickel-based alloy (NCF600). As a result, a uniform oxide film was formed on the surface of both the 316SS and NCF600 specimens in the air or air/H2O environments from 720°C to 1015°C, and the fracture time of the MI cable was evaluated by the degree of corrosion and the parabolic law. Conversely, when the gas mixture environment contained I2, each surface of the specimen showed complicated corrosion behavior that caused not only local corrosion but also the formation of a uniform oxide film at 800°C.

    View full abstract
    Download PDF (2540K)
  • Shota HASUNUMA, Hirohisa MIYAZAKI, Kensuke SHIMADA, Takeshi OGAWA
    Volume 5 (2018) Issue 2 Pages 17-00638
    Released: April 15, 2018
    [Advance publication] Released: April 03, 2018
    JOURNALS FREE ACCESS

    In this study, we investigated the mechanism of the indentation size effect based on measurement of the geometrically necessary (GN) dislocation density. The GN dislocation density was measured around impressions by electron backscatter diffraction (EBSD). Indentation tests were performed for two types of single crystal Ni with different crystal orientations: (001) and (111). Difference between (111) and (001) orientation are small in the relationship of the hardness and the penetration depth. However, the deformation behavior and distribution of the GN dislocation density are different for the (001) and (111) orientations. For the (111) orientation, the GN dislocation density increases with decreasing hardness. However, the GN dislocation density for the (001) orientation increases with increasing hardness. The mechanism of the indentation size effect for the (001) orientation can be attributed to the increase of the GN dislocation density. In addition, we investigated the effect of the indenter shape on the indentation size effect. Indentation tests were performed with different apex angles. The hardness using an indenter with a large apex angle is smaller than that using an indenter with a small apex angle. The GN dislocation density increases with decreasing apex angle. The mechanism of the indentation size effect for the apex angle can be attributed to the increase of the GN dislocation density. We prepared another indenter with a dull tip. The hardness using the dull indenter is larger than that using the sharp indenter. The GN dislocation density distribution changes with the indenter sharpness but the GN dislocation density is similar. For the dull indenter, variation of the GN dislocation density has a smaller effect on the indentation size effect than the increase of the resistance because of the different indenter shape.

    View full abstract
    Download PDF (2010K)
Fluids Engineering
  • Katsuya HIRATA, Naoki YABUKI, Kazuki UMEMURA, Tatsuya INOUE, Hirohisa ...
    Volume 5 (2018) Issue 2 Pages 17-00294
    Released: April 15, 2018
    [Advance publication] Released: March 14, 2018
    JOURNALS FREE ACCESS

    In order to investigate a self-excited oscillatory phenomenon of a two-dimensional confined jet with a cylinder as a downstream target, the authors conduct two-dimensional numerical analyses based on vorticity ζ and stream function ψ using a finite-difference discretisation method. At first, confirming the reliability and accuracy of the present analyses, the authors examine two kinds of preliminary tests prior to the main test. Aa a result, the authors reveal (1) the two-dimensionality of the phenomenon by comparing computations with experiments, and (2) the importance and complexity of the upstream of the downstream target.

    View full abstract
    Download PDF (3557K)
    • |<
    • <
    • 1
    • >
    • >|
feedback
Top