MRI is widely used in clinical practice for detecting liver diseases. Since the introduction of gadoxetic acid, MRI has become the most effective modality for the detection and characterization of focal liver lesions. According to previous meta-analyses, the area under the receiver operating characteristic curve (AUROC) was 0.97–0.99 for the diagnosis of small hepatocellular carcinoma (≥ 2 cm) by gadoxetic-acid-enhanced MRI. Moreover, the AUROC for the diagnosis of colorectal liver metastases was significantly high (0.98). Despite gadoxetic acid’s drawbacks, its clinical utility outweighs them, making it the contrast agent of choice in routine liver MRIs. Moreover, clinically, liver MRI has become more prevalent for a quantitative assessment. Liver fibrosis can be evaluated using MR elastography; whereas, hepatic steatosis and iron overload can be evaluated using proton density fat fraction, with high accuracy and reproducibility. This article reviewed the usefulness of liver MRI, which can be a comprehensive imaging modality in clinical practice.
Free-running 5D whole-heart coronary MR angiography (MRA) is gaining in popularity because it reduces scanning complexity by removing the need for specific slice orientations, respiratory gating, or cardiac triggering. At 3T, a gradient echo (GRE) sequence is preferred in combination with contrast injection. However, neither the injection scheme of the gadolinium (Gd) contrast medium, the choice of the RF excitation angle, nor the dedicated image reconstruction parameters have been established for 3T GRE free-running 5D whole-heart coronary MRA. In this study, a Gd injection scheme, RF excitation angles of lipid-insensitive binominal off-resonance RF excitation (LIBRE) pulse for valid fat suppression and continuous data acquisition, and compressed-sensing reconstruction regularization parameters were optimized for contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence at 3T. Using this optimized protocol, contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence is feasible with good image quality at 3T.
Purpose: Brain MRI with high spatial resolution allows for a more detailed delineation of multiple sclerosis (MS) lesions. The recently developed deep learning-based reconstruction (DLR) technique enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice 2D MRI. We, therefore, assessed the diagnostic value of 1 mm-slice-thickness 2D T2-weighted imaging (T2WI) with DLR (1 mm T2WI with DLR) compared with conventional MRI for identifying MS lesions.
Methods: Conventional MRI (5 mm T2WI, 2D and 3D fluid-attenuated inversion recovery) and 1 mm T2WI with DLR (imaging time: 7 minutes) were performed in 42 MS patients. For lesion detection, two neuroradiologists counted the MS lesions in two reading sessions (conventional MRI interpretation with 5 mm T2WI and MRI interpretations with 1 mm T2WI with DLR). The numbers of lesions per region category (cerebral hemisphere, basal ganglia, brain stem, cerebellar hemisphere) were then compared between the two reading sessions.
Results: For the detection of MS lesions by 2 neuroradiologists, the total number of detected MS lesions was significantly higher for MRI interpretation with 1 mm T2WI with DLR than for conventional MRI interpretation with 5 mm T2WI (765 lesions vs. 870 lesions at radiologist A, < 0.05). In particular, of the 33 lesions in the brain stem, radiologist A detected 21 (63.6%) additional lesions by 1 mm T2WI with DLR.
Conclusion: Using the DLR technique, whole-brain 1 mm T2WI can be performed in about 7 minutes, which is feasible for routine clinical practice. MRI with 1 mm T2WI with DLR enabled increased MS lesion detection, particularly in the brain stem.
Purpose: This study aimed to evaluate whether the image quality of 1.5T magnetic resonance imaging (MRI) of the knee is equal to or higher than that of 3T MRI by applying deep learning reconstruction (DLR).
Methods: Proton density-weighted images of the right knee of 27 healthy volunteers were obtained by 3T and 1.5T MRI scanners using similar imaging parameters (21 for high resolution image and 6 for normal resolution image). Commercially available DLR was applied to the 1.5T images to obtain 1.5T/DLR images. The 3T and 1.5T/DLR images were compared subjectively for visibility of structures, image noise, artifacts, and overall diagnostic acceptability and objectively. One-way ANOVA and Friedman tests were used for the statistical analyses.
Results: For the high resolution images, all of the anatomical structures, except for bone, were depicted significantly better on the 1.5T/DLR compared with 3T images. Image noise scored statistically lower and overall diagnostic acceptability scored higher on the 1.5T/DLR images. The contrast between lateral meniscus and articular cartilage of the 1.5T/DLR images was significantly higher (5.89 ± 1.30 vs. 4.34 ± 0.87, P < 0.001), and also the contrast between medial meniscus and articular cartilage of the 1.5T/DLR images was significantly higher (5.12 ± 0.93 vs. 3.87 ± 0.56, P < 0.001). Similar image quality improvement by DLR was observed for the normal resolution images.
Conclusion: The 1.5T/DLR images can achieve less noise, more precise visualization of the meniscus and ligaments, and higher overall image quality compared with the 3T images acquired using a similar protocol.
Purpose: The Multi-echo Dixon (ME-Dixon) is a non-invasive quantitative MRI technique to diagnose non-alcoholic fatty liver disease (NAFLD). In this study, the hydrogen proton MR spectroscopy (1H-MRS) was used as a reference to explore the accuracy of the ME-Dixon technique in evaluating hepatic steatosis in NAFLD patients after ingesting formulated food and its correlation with changes in clinical indicators.
Methods: Twenty-seven patients with NAFLD were enrolled. Fifteen patients completed 12 weeks of treatment with prebiotics and dietary fiber. In addition, abdominal MRI scans and blood tests were performed before and after treatment. The MRI-proton density fat fraction (MRI-PDFF) and MRS-PDFF were measured using the ME-Dixon and 1H-MRS techniques. The Bland–Altman method and Pearson correlation analysis were used to test the consistency of the two techniques for measuring the liver fat content and the changed values. Besides, correlation analysis was conducted between the MRI-PDFF value and metabolic indicators.
Results: In the PDFF quantification of 42 person-times and the monitoring of the PDFF change in 15 patients under treatment, there was a good consistency and a correlation between MRI and MRS. At baseline, MRI-PDFF was positively correlated with insulin resistance index (HOMA-IR), fatty liver index (FLI), and liver enzymes. After treatment, the changes in MRI-PDFF were positively correlated with the recovery degree of FLI and liver enzymes.
Conclusion: ME-Dixon has a good consistency and a correlation with MRS in quantifying the liver fat content and monitoring the treatment effect, which may be used as an accurate indicator for clinical monitoring of changes in the liver fat content.
Diffusion-weighted Echo Planar Imaging with Compressed SENSE (EPICS-DWI) for Pancreas Assessment: A Multicenter Study
Released on J-STAGE: August 06, 2024 |
Article ID mp.2024-0046
Tetsuro Kaga, Yoshifumi Noda, Masashi Asano, Nobuyuki Kawai, Kimihiro Kajita, Yukiko Takai, Fumitaka Ejima, Fuminori Hyodo, Hiroki Kato, Yoshihiko Fukukura, Masayuki Matsuo
Views: 212
Pseudonormal Corticomedullary Differentiation of the Kidney Assessed on T1-weighted Imaging for Chronic Kidney Disease Patients with Cirrhosis
Released on J-STAGE: August 11, 2015 | Volume 14 Issue 3 Pages 165-171
Fumi YAMADA, Yasuo AMANO, Fumitaka HIDAKA, Yoshimitsu FUKUSHIMA, Shinichiro KUMITA
Views: 167
Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method
Released on J-STAGE: July 01, 2024 | Volume 23 Issue 3 Pages 268-290
Toshiaki Taoka, Rintaro Ito, Rei Nakamichi, Toshiki Nakane, Hisashi Kawai, Shinji Naganawa
Views: 105
Fast Non-contrast MR Angiography Using a Zigzag Centric ky – kz k-space Trajectory and Exponential Refocusing Flip Angles with Restoration of Longitudinal Magnetization
Released on J-STAGE: September 05, 2024 |
Article ID mp.2023-0158
Vadim Malis, Diana Vucevic, Won C Bae, Asako Yamamoto, Yoshimori Kassai, John Lane, Albert Hsiao, Katsumi Nakamura, Mitsue Miyazaki
Views: 105
Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method
Released on J-STAGE: April 02, 2024 |
Article ID rev.2023-0175
Toshiaki Taoka, Rintaro Ito, Rei Nakamichi, Toshiki Nakane, Hisashi Kawai, Shinji Naganawa
Views: 96