SOLA
Search
OR
Browse
Search
Volume 13
Showing 1-45 articles out of 45 articles from the selected issue
    • |<
    • <
    • 1
    • >
    • >|
Editorial
  • Tetsuya Takemi
    Volume 13 (2017) Pages i-ii
    Released: January 07, 2017
    JOURNALS FREE ACCESS
    Scientific Online Letters on the Atmosphere (SOLA) is an online, open-access letter journal and was established to rapidly publish scientific discoveries, new findings, and advances of understanding in meteorology and atmospheric sciences as well as in related interdisciplinary areas. SOLA is committed to pursue the followings: rapid review cycle; rapid publication; and wide coverage in atmospheric sciences. SOLA aims to make final decision for the submitted papers within two months from the date of submission. After acceptance, the papers will appear on J-STAGE (https://www.jstage.jst.go.jp/browse/sola/) within one month. To cover wide areas in atmospheric sciences, the Editorial Committee of SOLA consists of 8 steering board members and 35 editors who specialize various fields in atmospheric sciences.
    SOLA was established in 2005 by the Meteorological Society of Japan. About 40 to 50 papers have been published each year, and in 2016 there were totally 67 papers in the regular volume and the special volume on The First Asian Conference on Meteorology.
    The Editorial Committee of SOLA gives The SOLA Award to outstanding paper(s) published each year starting from 2010. The award winning papers are as follows: Ito et al. (2010), Inoue et al. (2011), Endo (2011), Iwasaki and Mochizuki (2012), Moteki and Manda (2013), Miyama and Hasegawa (2014), and Masuda and Ishioka (2015).
    Among the 35 editors, 10 editors join the SOLA committee from the international research community outside Japan. SOLA welcomes submission from the international community in atmospheric sciences. We hope that SOLA would be a platform to publish researches in meteorology and atmospheric sciences including their related interdisciplinary fields.
    View full abstract
    Download PDF (103K)
  • Volume 13 (2017) Pages iii
    Released: February 02, 2017
    JOURNALS FREE ACCESS
    The Editorial Committee of Scientific Online Letters on the Atmosphere (SOLA) gives The SOLA Award to outstanding paper(s) published each year. I am pleased to announce that The SOLA Award in 2016 is going to be presented to the paper by Dr. Toru Adachi et al., entitled with “Rapid volumetric growth of misocyclone and vault-like structure in horizontal shear observed by phased array weather radar” (Adachi et al. 2016).
    Misocyclones are vertically oriented vortices with the horizontal scales from 40 m to 4 km and have a potential for wind disasters. This study investigates the rapid evolution of misocyclones that developed in the northern part of Osaka on 25 August 2013 by conducting high-temporal resolution observations with a phased array weather radar (PAWR). The PAWR observation showed that the top altitude of the misocyclones, developed in a horizontally sheared environment, was shown to rapidly grow from 1.2 km to 1.8 km height in two minutes and that the misocyclones gained a vault-like structure in the next two minutes. The analysis indicated that shear instability plays a role in the evolution of the misocyclones through stretching of vertically oriented vortices.
    This study is highly evaluated in demonstrating an observational evidence that the structure of misocyclones rapidly changes within a few minutes. Such a rapid growth was captured for the first time with a PAWR that can observe three-dimensional structure of precipitation and wind at the 30-second interval. Because misocyclones have a potential for wind disasters, it is important to understand the evolution of misocyclones and the resulting wind gusts. Furthermore, misocyclones sometimes play a role in initiating strong convection, and therefore, monitoring misocyclones at high-temporal resolutions should contribute to advancing now-casting of severe weather. Therefore, the Editorial Committee of SOLA highly evaluates the excellence of the authors’ study.
    View full abstract
    Download PDF (99K)
  • Tetsuya Takemi
    Volume 13 (2017) Pages iv
    Released: November 24, 2017
    JOURNALS FREE ACCESS
    Scientific Online Letters on the Atmosphere (SOLA) is going to implement new policy changes starting from 2018 in order to comply with a fully Open Access policy under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License. This license permits users to adapt, distribute, and reproduce the articles of SOLA in any medium, even commercially, provided that the users give appropriate credit to the original author(s) and the original source, provide a link to the license, and indicate if changes were made, without obtaining permission from the Meteorological Society of Japan (MSJ). The copyright of articles will be retained by the authors. Authors will be required to sign a License to Publish form in order to give the MSJ permission to reproduce the article in SOLA under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
    Another change is to employ Article Processing Charge (APC) in order to cover the publication cost such as copy editing, typesetting, and online procedures under the Open Access policy with the CC BY license, shifting from the current page charge. Author(s) or their institution(s) are requested to pay an APC to the MSJ with the amount of 80,000 Japanese Yen for members of the MSJ and 100,000 Japanese Yen for non-members of the MSJ (both with consumption tax if applicable). There will be a transition period for the articles that have been submitted in 2017 and will appear in early 2018; either the current page charge or the APC, a lower amount, will be asked to pay.
    I believe that this policy change would further enhance the status of SOLA in the international community.
    View full abstract
    Download PDF (90K)
Article
  • Guo-Yuan Lien, Takemasa Miyoshi, Seiya Nishizawa, Ryuji Yoshida, Hisas ...
    Volume 13 (2017) Pages 1-6
    Released: January 08, 2017
    JOURNALS FREE ACCESS

    With a goal of real-time, high-resolution, short-term prediction of heavy rainfall systems, the SCALE-LETKF was developed implementing the local ensemble transform Kalman filter with the Scalable Computing for Advanced Library and Environment-Regional Model (SCALE-RM). The system has been running in near real time experimentally since May 2015, configured for weather analyses and forecasts at 18-km resolution for a 5760 × 4320 km area around Japan. Among the data for more than one year, the near-real-time forecasts and the 3-km resolution downscaling simulations are demonstrated for a selected case of the September 2015 Kanto-Tohoku heavy rainfall associated with Typhoon Etau (2015). The typhoon track was successfully analyzed and predicted by the system, and the line-shaped rainband producing heavy rainfall can be reasonably forecasted by the downscaling simulation from the near-real-time data.

    View full abstract
    Download PDF (3257K)
  • Hirokazu Endo, Akio Kitoh, Ryo Mizuta, Masayoshi Ishii
    Volume 13 (2017) Pages 7-12
    Released: January 18, 2017
    JOURNALS FREE ACCESS

    Future changes in precipitation extremes in East Asia are investigated using large ensemble simulations of about 100 members by a 60-km mesh atmospheric general circulation model (AGCM) for the present climate and 4 K warmer climates, employing six different sea surface temperature (SST) anomaly patterns projected by state-of-the-art climate models. The high-resolution AGCM demonstrates good performance for reproducing precipitation extremes such as annual maximum 1-day precipitation total (Rx1d). Under the warmer climates, Rx1d are robustly projected to increase throughout East Asia. However, there is large range of their quantitative estimates, arising from internal variability and uncertainty in future SST patterns. Over land regions such as inland China, internal variability is the major source of the uncertainty in climatological-mean Rx1d change. However, over oceanic regions including Japan, Korea and coastal China, uncertainty in the SST patterns contributes greatly to the uncertainty in Rx1d through modulation of tropical cyclone activity, suggesting large regional variations in the relative importance of the two sources of uncertainty.

    View full abstract
    Download PDF (770K)
  • Faye T. Cruz, Hidetaka Sasaki
    Volume 13 (2017) Pages 13-18
    Released: January 29, 2017
    JOURNALS FREE ACCESS

    This study evaluates the performance of the Non-hydrostatic Regional Climate Model (NHRCM) in simulating the present climate over Southeast Asia to determine its applicability in downscaling climate projections in the region. Simulations from 1989 to 2008 are conducted over the region at 25-km resolution using boundary conditions from the ECMWF ERA-Interim dataset. The topographic effect on rainfall is well represented in NHRCM but can result in wet (dry) biases in the windward (leeward) side of mountains. NHRCM is able to reduce the overestimated rainfall in ERA-Interim, particularly over eastern Philippines and in the Maritime Continent, with improvements in spatial patterns. Both seasonality and daily distribution of rainfall are represented in most regions. On the other hand, there is a tendency to underestimate the number of wet days, especially during the respective wet season of the subregion, and to overestimate daily rainfall intensity. NHRCM also has an overall cold model bias, which reduces the warm bias in ERA-Interim, except for some parts of Indochina during boreal winter and spring. These results indicate the improved representation of present climate in Southeast Asia using NHRCM, and its potential applicability in downscaling climate projections to increase projected climate scenarios for the region.

    View full abstract
    Download PDF (3674K)
  • Miki Hattori, Akira Yamazaki, Shin-Ya Ogino, Peiming Wu, Jun Matsumoto
    Volume 13 (2017) Pages 19-24
    Released: February 24, 2017
    JOURNALS FREE ACCESS

    The impact of the radiosonde observations of cold surge over the Philippine Sea on the tropical region and the Southern Hemisphere has been investigated by the assimilation of radiosonde data obtained during the R/V Hakuho Maru cruise KH–12–6 in late December 2012. After assimilating the observation data, the modified surface winds of the cold surge were generally stronger than those before the assimilation. In addition, cyclonic rotations around the 4 developing tropical cyclones in the Northern and Southern Hemispheres were more intensified. Furthermore, the analysis errors over the Indian Ocean and the Pacific Ocean in the Northern and Southern Hemispheres were reduced by 1 to 10%.

    The impacts of the additional radiosonde observations in the cold surge immediately propagated up to the updraft region near the equator and to the mid-latitude downdraft regions through the local Hadley circulation. After the impact spread in the lower troposphere, large impacts were deepened around the tropical cyclones and depressions within 2 days. The propagation process of the additional observation impact over the Philippine Sea suggested that the cold surge could affect large-scale circulation, including typhoons and tropical depressions in the tropics and the mid-latitude regions.

    View full abstract
    Download PDF (2300K)
  • Yusuke Urabe, Tamaki Yasuda, Shuhei Maeda
    Volume 13 (2017) Pages 25-30
    Released: March 02, 2017
    JOURNALS FREE ACCESS

    Since around 2013, the globally averaged sea surface temperature has rapidly warmed up and reached its highest on record. During this time, there was an intensifying El Niño event that caused positive temperature anomalies in the tropical Pacific Ocean. Compared with the conditions observed in 1997/98, when the previous highest record was marked associated with strong El Niño event, there were notable differences detected in the recent conditions. In the tropical Pacific, remarkable warming near sea surface associated with strong El Niño event in 2015/16 started from significantly warmed conditions along with positive temperature anomaly redistributed from the western part since early 2014, resulting in positive anomalies in the central to eastern part remaining for more than two years, much longer than 1997/98 event. In addition, substantial warming was observed in the North Pacific around 2013 and contribution of the North Pacific region to the global averaged SST anomaly marked significantly large value and was comparable to that of the tropical Pacific.

    View full abstract
    Download PDF (3040K)
  • Keiya Yumimoto, Itsushi Uno, Xiaole Pan, Tomoaki Nishizawa, Sang-Woo K ...
    Volume 13 (2017) Pages 31-35
    Released: March 19, 2017
    JOURNALS FREE ACCESS

    An inverse modeling system for estimating Asian dust emissions was developed by combining the GEOS-Chem chemical transport model with the Green's function method. We applied the system to two heavy dust storms that occurred in 2014 (10-25 March and 24 May to 5 June), using surface-based polarization optical particle counter (POPC) observations at Fukuoka. Validation by independent observation datasets, including POPC measurements and PM10 observations at Seoul, showed that the use of a posteriori dust emissions improved overestimations in the a priori simulation and achieved much better agreement with observations. Satellite observations, surface synoptic observations, and modeled wind fields indicated that the major dust source region differed between the two dust storms; the major dust outbreak of one storm occurred in the northeastern Gobi Desert, whereas that of the other occurred in the southern Gobi Desert. The a posteriori dust emissions successfully reproduced this difference. Thus, the inverse modeling system developed in this study was able to improve the estimation of not only the intensity but also the geographical distribution of dust emissions.

    View full abstract
    Download PDF (754K)
  • Peiming Wu, Dodi Ardiansyah, Satoru Yokoi, Shuichi Mori, Fadli Syamsud ...
    Volume 13 (2017) Pages 36-40
    Released: March 24, 2017
    JOURNALS FREE ACCESS

    This study examined the impact of an active phase of the Madden–Julian Oscillation (MJO) on a torrential rain event that occurred on the western coast of Sumatra Island on 12 December 2015, using surface meteorological observations, meteorological radar observations, and balloon sounding data obtained from the pre-Years of the Maritime Continent field campaign. Strong MJO activity took place in mid-December 2015 into January 2016. Radar observations revealed that a convergence and convective cloud merger of mesoscale convective systems from an eastward propagating MJO and westward moving diurnal convection over the western coast of the island was the immediate cause of the torrential rain. An investigation of the occurrence of convection over the island showed that both westward moving diurnal convection from the mountains and eastward propagating convection from the Indian Ocean occurred on 12 December, because the westerly winds in the lower troposphere associated with the MJO were only just initiated and were weak on the day. The results suggest that the leading edge of the MJO westerly wind bursts provided favorable conditions for an active phase of the MJO to work with the westward moving diurnal convection and cause torrential rain on the western coast of Sumatra Island.

    View full abstract
    Download PDF (5748K)
  • Akira Yamazaki, Takeshi Enomoto, Takemasa Miyoshi, Akira Kuwano-Yoshid ...
    Volume 13 (2017) Pages 41-46
    Released: March 25, 2017
    JOURNALS FREE ACCESS

    The observation operators in the local ensemble transform Kalman filter (LETKF) were improved to enable use of observations in the vicinity of the poles in the data assimilation system composed of the atmospheric general circulation model for the Earth Simulator (AFES) and the LETKF. The improved observation operators allow to assimilate the observations located south (north) of southernmost (northernmost) Gaussian grid latitudes. An algorithm for searching the nearest observations from an analyzed grid for error covariance localization was also modified to efficiently assimilate observations near the poles.

    The new algorithms were incorporated into the LETKF, and the impacts of routine radiosonde observations at the South Pole during the periods of July 2012 and January 2013 were assessed. The radiosonde observations suppressed an artificial expansion of the analysis ensemble spread which occasionally caused numerical instability in the upper troposphere and the lower stratosphere over the Antarctic regions. The analysis was also improved in the Antarctic regions.

    View full abstract
    Download PDF (3941K)
  • Itsushi Uno, Keiya Yumimoto, Xiaole Pan, Zhe Wang, Kazuo Osada, Syuic ...
    Volume 13 (2017) Pages 47-52
    Released: March 29, 2017
    JOURNALS FREE ACCESS

    Heavy dust storms that occurred between 13 and 23 March 2014 were selected for analysis as a case study of dust and sand storm events by the Tripartite Environment Ministers Meeting. During this period, two dust and anthropogenic aerosol events were observed and analyzed. The GEOS-Chem chemical transport model, which includes dust-acid uptake processes, successfully reproduced the aerosol variations and explained the Asian-scale dust-pollutant transport processes. Our results confirmed the importance of coarse-mode dust-nitrate as evidence of ‘polluted dust’ pollution. The model analysis showed that the formation of dust-nitrate occurred over the Yellow Sea and East China Sea before arriving in Japan. We showed that more than 40% of nitrate exists in dust-nitrate when air mass arrived in Japan.

    View full abstract
    Download PDF (3544K)
  • Seiji Yukimoto, Kunihiko Kodera, Rémi Thiéblemont
    Volume 13 (2017) Pages 53-58
    Released: April 04, 2017
    JOURNALS FREE ACCESS

    A delayed response of the winter North Atlantic oscillation (NAO) to the 11-year solar cycle has been observed and modeled in recent studies. However, the mechanisms creating this 2-4-year delay to the solar cycle have still not been well-understood. This study examines the effects of the 11-year solar cycle and the resulting modulation in the strength of the winter stratospheric polar vortex. A coupled atmosphere–ocean general circulation model is used to simulate these effects by introducing a mechanistic forcing in the stratosphere. The intensified stratospheric polar vortex is shown to induce positive and negative ocean temperature anomalies in the North Atlantic Ocean. The positive ocean temperature anomaly migrated northward and was amplified when it approached an oceanic frontal zone approximately 3 years after the forcing became maximum. This delayed ocean response is similar to that observed. The result of this study supports a previous hypothesis that suggests that the 11-year solar cycle signals on the Earth's surface are produced through a downward penetration of the changes in the stratospheric circulation. Furthermore, the spatial structure of the signal is modulated by its interaction with the ocean circulation.

    View full abstract
    Download PDF (8564K)
  • Masanori Onishi, Isao Iizawa, Kazuhiro Umetani, Aya Ito, Arata Yajima, ...
    Volume 13 (2017) Pages 59-62
    Released: April 13, 2017
    JOURNALS FREE ACCESS

    Heat island intensity approaches the maximum during urban Phase A period, which constitutes a few hours around sunset when radiative cooling primarily determines the temperature decrease. To evaluate the thermal inertia of urban and rural canopy layer, we suggested a local effective thermal inertia (LETI) that corresponds to a canopy layer thermal inertia, excluding advection effects caused by such as heat island circulation, and estimated the value by observing a 30-min temperature variation and radiation flux when clouds appeared during night. The urban area LETI is approximately two times higher than the rural value. LETI has a close relationship to the cooling rate in Phase A and is an important value for urban canopy layer thermal inertia.

    View full abstract
    Download PDF (1138K)
  • Chengcheng Huang, Guocan Wu, Xiaogu Zheng
    Volume 13 (2017) Pages 63-68
    Released: April 15, 2017
    JOURNALS FREE ACCESS

    The estimation accuracy of ensemble forecast errors has a key influence on the assimilation results of all ensemble-based schemes. The ensemble transform Kalman filter (ETKF) assimilation scheme can assimilate nonlinear observations without using the adjoint of a dynamical model; however, the initially estimated ensemble forecast errors must be further adjusted. In this paper, the estimation of forecast error is improved using a self-generated analysis and a corresponding iterative procedure is then established for the ETKF with nonlinear observation operators. The improved assimilation scheme is validated using the Lorenz-96 model with a nonlinear and spatially correlated observation system as a test bed. The experiment results demonstrate that the improved ETKF assimilation scheme can effectively reduce the analysis error.

    View full abstract
    Download PDF (1329K)
  • Hiroaki Miura
    Volume 13 (2017) Pages 69-73
    Released: April 25, 2017
    JOURNALS FREE ACCESS

    A shallow water model is developed on the regular hexagonal mesh by combining the hexagonal B1-grid and B2-grid schemes. The new scheme called as the hexagonal synchronized B-grid (SB-grid) scheme in this work allows avoiding a computational mode problem of the ZM-grid scheme. It is known that the problem is caused by the mismatch of degrees of freedoms of the prognostic variables. The SB-grid uses the same variable arrangement as the ZM-grid, placing fluid depths and fluid velocities at the centers and corners of hexagonal cells, respectively, but the nonlinear terms of the momentum equation are discretized using wider spatial stencils than those of the ZM-grid. This change results in the inhibition of extra interactions in the velocity fields that enhances a computational mode in the ZM-grid. Geostrophic adjustment tests on a regular hexagonal mesh confirm that the SB-grid shallow water model behaves almost equivalently to the Z-grid model, and the computational mode problem is certainly settled down.

    View full abstract
    Download PDF (2631K)
  • Shiho Onomura, Kenichi Kusunoki, Ken-ichiro Arai, Hanako Y. Inoue, Nao ...
    Volume 13 (2017) Pages 74-78
    Released: May 13, 2017
    JOURNALS FREE ACCESS

    A wind gust of F0 scale occurred in Shonai town, Yamagata Prefecture, Japan, on 4 December 2015. It damaged some houses in a narrow valley 24 km from the coast of the Japan Sea. Around that time, one of many isolated convective clouds greater than 6 km in height traveled over the area. Observation of two Doppler radars with high resolution in time and space showed that a cyclonic vortex generated at the south edge of the convective cloud after landfall from the Japan Sea rapidly developed with increasing vorticity as it moved inland. The vortex traveled across a mountain, and its southern part near its center subsequently passed over the damaged area. The radius and vorticity of the vortex were 0.64 km (misoscale) and 0.048 s−1, respectively. A hook-shaped echo, a vault-shaped echo, and a couplet of maximum and minimum Doppler velocities, which indicate the existence of a vertically oriented vortex tube, are clearly shown. This study discusses the development of the winter misocyclone observed by the radars in terms of the relationship with the behavior of the parent cloud and the possible topographical influence of the mountain and valley on the vortex structure.

    View full abstract
    Download PDF (3439K)
  • Youhei Kinoshita, Masato Furuya
    Volume 13 (2017) Pages 79-84
    Released: May 13, 2017
    JOURNALS FREE ACCESS

    Localized propagation delay signals associated with line-aligned convective cells were detected by the Synthetic Aperture Radar Interferometry (InSAR) technique on 25 August 2010 in Niigata prefecture. The maximum amplitude of the signal reached up to 22.5 cm, which was approximately equivalent to 29 mm anomaly in precipitable water vapor (PWV). The nationwide radar rainfall intensity captured the spatial distribution of hydrometeors on both land and sea, which was similar to that of the InSAR-derived water vapor field, suggesting that the convective cells were initiated on the Japan Sea to the west-southwest of the observation area. A numerical weather model (NWM) simulation with the grid spacing of 2.5 km reproduced line-aligned convective cells with 3 cm smaller maximum amplitude to that in InSAR. A NWM simulation that assimilates Global Navigation Satellite System (GNSS)-derived PWV data for four-dimensional variational assimilation enhanced the water vapor flux convergence at the surface, which improved the amplitude of the localized delay signals. The advantage of the unique water vapor observation by InSAR enabled us to assess the meso-gamma scale NWM reproducibility in terms of water vapor, which is one of the fundamental prognostic parameter for NWMs.

    View full abstract
    Download PDF (4957K)
  • Tomohiko Tomita, Tsuyoshi Yamaura
    Volume 13 (2017) Pages 85-89
    Released: May 22, 2017
    JOURNALS FREE ACCESS

    The North Pacific shows dominant monthly-mean large-scale atmospheric circulation anomalies, even after removing the variabilities of the Northern Hemisphere annular mode and the El Niño/Southern Oscillation. This work examines the precursors and their development for these residual anomalous circulations by applying objective reanalysis data to empirical orthogonal function (EOF) analysis. The first EOF mode (EOF1) features a monopole, while a dipole characterizes the second EOF mode (EOF2) over the North Pacific. Transient eddies (TEs) interactively induce the two EOF modes.

    The precursors of EOF1 and EOF2 are detected in the anomalies of one month earlier; these are the systematic zonal bands detected in surface temperature and baroclinic instability (BI) in the lower troposphere over Eurasia and North America. The BI anomalies further extend into the central North Pacific at different latitudes between EOF1 and EOF2. Coherent zonal bands also appear in the geopotential height anomalies of upper troposphere. Such zonal bands reflect the ovalization of Arctic circumpolar circulation with different continent-ward shifts of the longer axis. The direction of this shift determines which EOF mode develops by the following month through the guided activation of TEs at a designated latitude over the North Pacific.

    View full abstract
    Download PDF (4832K)
  • Minrui Wang, Kenji Kai, Yoshitaka Jin, Nobuo Sugimoto, Batdorj Dashdon ...
    Volume 13 (2017) Pages 90-95
    Released: May 22, 2017
    JOURNALS FREE ACCESS

    Ulaanbaatar, the capital city of Mongolia, is subject to high levels of atmospheric pollution during the winter, which severely effects the health of the exposed population. Using lidar and ground level meteorological observations, we studied the temporal variation of the PM2.5 and the structure of the atmospheric boundary layer (ABL) during the 2010 heating season. The concentration of PM2.5 increased after the air temperatures sharply decreased during two cold waves occurring 8-10 and 21-25 October. The surface air temperatures first dropped below 0°C because of the cold wave beginning on 10 October, which prompted the households in the ger (traditional Mongolian dwelling) districts to start combusting coal for heating, resulting in increased PM2.5 concentrations. Meanwhile, the maximum ABL height continuously decreased from summer to winter and dropped below 800 m after the second cold wave, when the weather was influenced by a Siberian high. The stable atmospheric conditions and surface inversion layer in winter resulted in low wind velocities (< 2 m s−1), especially at night. Consequently, because of both the meteorological and topographical conditions, air pollutants remained at the urban surface level, which resulted in high concentrations of PM2.5 in winter.

    View full abstract
    Download PDF (5531K)
  • Teppei J. Yasunari, Masashi Niwano, Yasushi Fujiyoshi, Atsushi Shimizu ...
    Volume 13 (2017) Pages 96-101
    Released: June 01, 2017
    JOURNALS FREE ACCESS

    Monitoring particulate matter is essential to alert the public about health risks. The Terra/MODIS true color image clearly captured a yellow band over Hokkaido prefecture in Japan on 7 March 2016. We investigated whether this event was an Asian dust (Kosa) transport or not with the ground-based observations in Sapporo and Takikawa in Hokkaido and NASA's MERRA-2 re-analysis data. The timing of increased particle number concentrations (PNCs; greater than 0.5 μm) was clearly measured by a low-cost aerosol sensor at Sapporo and Takikawa in the early afternoon. For this particle size range, the PNC by this aerosol sensor had greater agreement with another commercial instrument for the 1-hourly mean data. The lidar data at Takikawa and NASA's AERONET at Sapporo also implied the increased dust particles (i.e., dominance of non-spherical and coarse particles, respectively), which supported that the PNC increase was due to the dust transport. The hourly PM2.5 data in Sapporo significantly increased in the evening rather than around the noon to early afternoon. We concluded that this event was judged as an Asian dust (Kosa) event in Hokkaido starting from the early afternoon, which was, however, not reported by Japan Meteorological Agency (JMA) based on their visible observations.

    View full abstract
    Download PDF (2237K)
  • Juan Feng, Yun Chen, Jianping Li, Yang Li, Yun Yang
    Volume 13 (2017) Pages 102-108
    Released: June 17, 2017
    JOURNALS FREE ACCESS

    The meridional structures of tropical sea surface temperature (SST) play an important role in impacting the variations of Hadley circulation (HC), and the response amplitudes of the HC to different meridional tropical SST structures show contrasting differences. Using the simulations of phase 5 of the Coupled Model Intercomparison Project (CMIP5), the performance of the state-of-art models in reproducing the response contrast of the HC to different SST meridional structures during the seasonal cycle is evaluated in this study. The result indicates that the models show high skills in capturing the climatological features of annual mean HC and tropical SST. Moreover, the leading variabilities of HC and tropical SST during the seasonal cycle are well reproduced for both the equatorially asymmetric and symmetric variations. Furthermore, most of the models display good agreement with the observations in depicting the responses contrast of the HC to different SST meridional structures. These results indicate that the current CMIP5 models show high capability in capturing the response of HC to tropical SST during the seasonal cycle, and provide confidence for further detecting the future variations of HC.

    View full abstract
    Download PDF (2409K)
  • Itsushi Uno, Keiya Yumimoto, Kazuo Osada, Zhe Wang, Xiaole Pan, Syuich ...
    Volume 13 (2017) Pages 109-113
    Released: June 17, 2017
    JOURNALS FREE ACCESS

    Two heavy dust storms that occurred between 24-26 May 2014 in Mongolia and Inner Mongolia, China were responsible for long-lasting dust episodes observed from 26 May to 2 June 2014 in Fukuoka, Japan. During this period, dust and anthropogenic pollutants were transported simultaneously to Fukuoka and Korea and remained there for almost 8 days. We successfully observed fine and coarse aerosol time variations (1-hour intervals) in Fukuoka. The GEOS-Chem chemical transport model, which includes dust-acid uptake processes, successfully reproduced the aerosol variations and explained the Asian-scale dust-pollutant transport and transformation processes. Model sensitivity analyses with and without dust-acid uptake processes showed that the formation of dust-nitrate occurred over the Yellow Sea and East China Sea before arriving in Japan. The model sensitivity analysis showed that less than 5% of the coarse dust-nitrate originated from NOx emissions from Japan, and large amounts of dust-nitrate originated outside of Japan.

    View full abstract
    Download PDF (868K)
  • Joseph Q. Basconcillo, Ger Anne W. Duran, Aaron A. Francisco, Rusy G. ...
    Volume 13 (2017) Pages 114-119
    Released: June 28, 2017
    JOURNALS FREE ACCESS

    To overcome the limitation of low network density and sparse distribution of meteorological stations, spatial interpolation is being performed for estimating meteorological variables that are not geographically covered by existing observation network. While there are several readily available spatial interpolation techniques, it is still difficult to determine which one best estimates actual observation. Considering the stimulus for disaster risk reduction, hydrological, agricultural, and other applications of interpolated data, this study compared six interpolation techniques (Inverse Distance Weighted (IDW), Completely Regularized Spline (CRS), Tension Spline (TS), Ordinary Kriging (OK), Universal Kriging (UK), and ANUSPLIN) that have been recommended in tropical maritime region. Validation results comparing historical monthly and interpolated rainfall data from 1981-2010 in 65 stations in the Philippines show that OK has the best performance among the aforementioned techniques followed by ANUSPLIN and TS. Ultimately, this study is a contribution to the existing inadequate literatures that have documented and evaluated interpolation techniques that can be used in archipelagic regions with prominent climate variability.

    View full abstract
    Download PDF (4099K)
  • Kazuto Takemura, Yutaro Kubo, Shuhei Maeda
    Volume 13 (2017) Pages 120-124
    Released: June 28, 2017
    JOURNALS FREE ACCESS

    This study analyzes a Rossby wave-breaking event east of Japan that enhanced the convective activities over the subtropical western North Pacific Ocean. In August 2016, Rossby-wave packets in the upper troposphere above Eurasia reached over and around the seas east of Japan. The wave-breaking event accompanied the amplification of a blocking ridge and the southward intrusion of upper-level high-potential vorticity (PV) south of the ridge. The high PV (i.e., the enhanced mid-Pacific trough) promoted upward motion and enhancement of convective activities over the subtropical western North Pacific Ocean through a quasi-geostrophic balance. In the lower troposphere, large-scale cyclonic circulation anomalies, including tropical disturbances, were observed south and southeast of Japan, and the anomalies caused significant wet climate conditions in the eastern and northern parts of the country. A linear baroclinic model experiment indicates that the lower-level cyclonic circulation anomalies were the Rossby-wave responses to heating anomalies associated with the enhanced convective activities. These results suggest the existence of dynamic interaction between extratropical and tropical circulation over the western North Pacific Ocean and its influence on boreal summer climate in Japan.

    View full abstract
    Download PDF (3825K)
  • Xiaowei Huai, Jianping Li, Ruiqiang Ding, Deqiang Liu
    Volume 13 (2017) Pages 125-129
    Released: July 15, 2017
    JOURNALS FREE ACCESS

    The impact of the length of the evolutionary window (EW) on the estimation of the predictability limit of the Lorenz-63 model using the nonlinear local Lyapunov exponent (NLLE) method is studied. The structure of the initial errors and error growth dynamics are analyzed. It is found that there exists an optimal EW, at which the estimated predictability limit is closest to its theoretical value. With a shorter EW, the predictability limit is underestimated, while at longer EWs it is overestimated. The optimal EW is approximately equal to the decorrelation time of the system. A preliminary explanation for this link, based on the loss of information from the initial state, is given.

    View full abstract
    Download PDF (835K)
  • Shigenori Otsuka, Nurjanna J. Trilaksono, Shigeo Yoden
    Volume 13 (2017) Pages 130-134
    Released: July 15, 2017
    JOURNALS FREE ACCESS

    Size distributions of tropical convective systems in regional numerical atmospheric models are analyzed over a 2.5 × 105 km2 domain using different model grid spacing and parameterization schemes. The 5- and 20-km-resolution experiments are configured with a cumulus parameterization scheme, whereas the 2- and 4-km-resolution experiments are not. Precipitation systems are defined by either synthetic satellite infrared images, surface rain rates, or vertical winds at 600 hPa. The size distributions of systems defined by shallower clouds, lower rain rates, and weaker updrafts follow power laws, whereas those defined by deep clouds, higher rain rates, and stronger updrafts show lognormality. The cloud size distribution of the 5-km-resolution experiment is most similar to that of the real geostationary satellite observations. Generally, the largest system size becomes larger in the 5- and 20-km-resolution experiments, implying that the cumulus parameterization may have an impact on that scale. Exceptionally, all the model-simulated size distributions of heavy rain areas agree well at the largest scale. Lower-resolution experiments tend to underestimate the number of small-scale systems when compared with higher-resolution experiments. The size distributions also capture a temporal modulation of precipitation during the 2007 Jakarta flood event; small-scale intense precipitation systems increase during the period.

    View full abstract
    Download PDF (583K)
  • Wataru Mashiko, Hiroshi Niino
    Volume 13 (2017) Pages 135-139
    Released: July 31, 2017
    JOURNALS FREE ACCESS

    A super high-resolution simulation of the 6 May 2012 Tsukuba supercell tornado with a horizontal grid spacing of 10 m is conducted to investigate its fine-scale structure under realistic environmental conditions including surface friction. The simulated tornado repeatedly exhibits evolutions from one-cell to two-cell vortex, and subsequently to a multiple-vortex structure, where the vortex structure is sensitive to a swirl ratio. Subvortices in the multiple-vortex structure are located on the immediate inside of the radius of the maximum tangential wind speed, and cyclonically rotate around the tornado center with a slower speed less than half of the maximum tangential wind speed. The subvortices have a feature of a suction vortex accompanied by strong horizontal convergence and strong updraft near the surface. Although a superposition of the swirling winds associated with the subvortices and the parent tornado vortex causes locally intensified winds, the maximum horizontal and upward winds over the tornado's lifetime occur at the stage of shrinking of the vortex radius right before a transition to a multiple-vortex structure.

    View full abstract
    Download PDF (3030K)
  • Kunihiko Kodera, Hitoshi Mukougawa
    Volume 13 (2017) Pages 140-145
    Released: August 05, 2017
    JOURNALS FREE ACCESS

    Eurasia experienced severe cold weather in December 2012. Particularly strong cold spells occurred in two regions: one over eastern Eurasia in early December, and the other in central to western Eurasia in mid-December. These extreme events were produced in association with blocking phenomena triggered by reflection or downward propagation of planetary waves from the stratosphere.

    This event was unusual in that dominant component of upward and downward propagating wave is different: zonal wavenumber 2 component is dominant in the upward propagation; due to the amplification of zonal wavenumber 1 component in the upper stratosphere, zonal wavenumber 1 component becomes important in the subsequent downward propagation in the polar region. Identification of the tropospheric impact of the downward propagation of planetary waves is usually not easy. In the present case, however, the difference in the dominant zonal wavenumber between the upward and downward propagation facilitates to separate upward and downward propagation processes, and to isolate the amplification process of planetary waves in the upper stratosphere.

    View full abstract
    Download PDF (2852K)
  • Akihiro Hashimoto, Masataka Murakami, Shigenori Haginoya
    Volume 13 (2017) Pages 146-150
    Released: September 08, 2017
    JOURNALS FREE ACCESS

    The Japan Meteorological Agency Non-Hydrostatic Model was applied to meteorological simulations under arid and semi-arid environments of the United Arab Emirates (UAE). A one-year hindcast experiment was conducted with both an original configuration, which is well tuned for mid-latitude humid conditions around Japan, and a new configuration, which represents a much drier land surface condition. The new configuration produced much better results in terms of the diurnal variation of land surface temperature and consequent surface air temperature, as well as cloud and precipitation occurrence. The most effective factors for improving results are the threshold of soil water content and the parameters associated with surface and soil heat flux. The improvement indicates the validity of the model application to the investigation of cloud and precipitation processes over the UAE.

    View full abstract
    Download PDF (4112K)
  • Junshi Ito, Syugo Hayashi, Akihiro Hashimoto, Hideaki Ohtake, Fumichik ...
    Volume 13 (2017) Pages 151-156
    Released: September 08, 2017
    JOURNALS FREE ACCESS

    This study evaluated the performance of a regional weather prediction model. The horizontal resolution is increased to the sub-kilometer scale in a series of experiments over areas of Japan through the summer or winter seasons of 2015-2016. The performance improves less when increasing the horizontal resolution from 2 km to 1 km or 500 m than it does from 5 km to 2 km, especially when topography and ice microphysics are less relevant. Although the velocity and magnitude of updrafts, cloud size, and convection in the boundary layer indeed change with the horizontal resolution, these differences turn out to have little impact on the model performance.

    View full abstract
    Download PDF (1314K)
  • Toru Terao, Fumie Murata, Yusuke Yamane, Masashi Kiguchi, Azusa Fukush ...
    Volume 13 (2017) Pages 157-162
    Released: September 09, 2017
    JOURNALS FREE ACCESS

    The near surface rain (NSR) dataset of the Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) 2A25 V7 was validated using 36 tipping bucket raingauges installed over the northeastern Indian subcontinent, which correspond with the rain center of the Asian summer monsoon. This raingauge network covers the Brahmaputra flood plains and mountainous areas, including the Meghalaya Plateau, which is one of the wettest places in the world. We analyzed data from 2004 to 2013, and obtained 28,207 TRMM/PR-raingauge matchups with 2,170 TRMM/PR rainy field of views. Using them, we detected a reasonable time lag of around 300 seconds between the estimates from the TRMM/PR NSR and raingauges. Significant and large underestimations of TRMM/PR NSR were detected during the monsoon season (June–September) over the large areas of Meghalaya, Sylhet, and Barak. The bias ratios were −51.3% and −35.2% for the Meghalaya and Sylhet-Barak areas, respectively. In the Meghalaya subregion, major contribution to underestimation came from moderate TRMM/PR NSR from stratiform systems, and missed detection error was secondary contributor. In Sylhet-Barak subregion, moderate TRMM/PR NSR from convective systems largely contributed. Underestimation was not detected in premonsoon season (March–May).

    View full abstract
    Download PDF (1697K)
  • Masayoshi Ishii, Yoshikazu Fukuda, Shoji Hirahara, Soichiro Yasui, Tor ...
    Volume 13 (2017) Pages 163-167
    Released: September 14, 2017
    JOURNALS FREE ACCESS

    The simplest global mapping method and dense data coverage for the global oceans by the latest observation network ensure an estimate of global ocean heat content (OHC) within a satisfactory uncertainty for the last 60 years. The observational database conditionally presented a level high enough for practical use for the global OHC estimation when applying bias corrections of expendable bathythermograph, assuming that the other severe observational biases are not included in the database. Uncertainties in annual global mean temperatures averaged vertically from the surface to 1,500 m are within 0.01 K for the period from 1955 onward, when only sampling errors are taken into account. Those in annual mean global OHC of an improved objective analysis for 0-1,500 m depth is 16ZJ on average throughout the period. Compared to previous studies, the new objective analysis provides a higher estimation of the global 0-1,500 m OHC trend for a longer period from 1955 to 2015, which is an increase of 350 ± 57ZJ with a 95% confidence interval.

    View full abstract
    Download PDF (681K)
  • Chisa Iwasaki, Ryoichi Imasu, Andrey Bril, Tatsuya Yokota, Yukio Yoshi ...
    Volume 13 (2017) Pages 168-173
    Released: September 14, 2017
    JOURNALS FREE ACCESS

    Column-averaged concentrations of carbon dioxide (XCO2) and methane (XCH4) were retrieved from spectra observed by the Greenhouse gases Observing SATellite (GOSAT) using the so-called Photon path length Probability Density Function-Simultaneous (PPDF-S) retrieval method, which explains cloud/aerosol effects in terms of light path modification. The PPDF-S data, as well as the standard products for General Users (GU) of XCO2 and XCH4 retrieved using the full physics (FP) method, were validated through comparison with Total Carbon Column Observing Network (TCCON) data. Results show that bias and its standard deviation of XCO2 over the land are 0.73 and 1.83 ppm for the PPDF-S data, and −0.32 and 2.16 ppm for GU products. For XCH4, they are 1.4 and 14.1 ppb, and −1.9 and 12.5 ppb, respectively. Although the magnitude relations between XCO2 and XCH4 retrieved by the PPDF-S and GU products are identical over the land, they differ over the ocean. This fact emphasizes the importance of additional validation data over the ocean. Results also show that 68% of FP data that were screened out through an Aerosol Optical Thickness (AOT) test passed all screening tests for the PPDF-S method, implying the applicability of the PPDF-S method to denser aerosol conditions.

    View full abstract
    Download PDF (2126K)
  • Yasumitsu Maejima, Masaru Kunii, Takemasa Miyoshi
    Volume 13 (2017) Pages 174-180
    Released: September 27, 2017
    JOURNALS FREE ACCESS

    This study aims to investigate the impacts of 30-second-update and 100-m-resolution data assimilation (DA) on a prediction of sudden local torrential rains caused by an isolated convective system in Kobe city on 11 September 2014. We perform a Local Ensemble Transform Kalman filter (LETKF) experiment with the Japan Meteorological Agency non-hydrostatic model (JMA-NHM) at 1-km and 100-m resolution using every-30-second radar reflectivity observed by the phased array weather radar (PAWR) at Osaka University. The 1-km-mesh experiment shows that 30-second-update PAWR DA has positive impacts on the analyses and forecasts. Moreover, the 100-m-mesh experiment shows significant advantages in representing the rainfall intensity and fine structure of the convective system. The promising results suggest that 30-second-update, 100-m-mesh DA have a great potential for predicting sudden local rain events.

    View full abstract
    Download PDF (7212K)
  • Juan Feng, Jianping Li, Yaqi Wang, Yipeng Guo
    Volume 13 (2017) Pages 181-185
    Released: October 13, 2017
    JOURNALS FREE ACCESS

    Variations of the Hadley circulation (HC) are influenced by the underlying sea surface temperature (SST). The contrasting response of the HC to meridional structure of SST is examined between two periods, one prior to and the other during the recent warming hiatus (i.e., 1979-1998 and 1999-2015). By decomposing the variations of HC and SST into equatorially asymmetric (HEA for HC; SEA for SST) and symmetric components (HES for HC; SES for SST), the HEA response to SEA and the HES response to SES are quantitatively analyzed. Multiple reanalyses consistently indicate that the ratio of the response of HEA to SEA with respect to that of HES to SES is clearly decreased in the period 1999-2015. This is because the response of HEA to SEA is suppressed in this period, while the response of HES to SES is enhanced, suggesting a corresponding change in the air–sea interactions involved during the two periods. Further examination found that the variation of SST over Pacific may play an important role in determining the reduced response ratio of HC to SST in the recent hiatus.

    View full abstract
    Download PDF (1396K)
  • Yousuke Yamashita, Masayuki Takigawa, Kentaro Ishijima, Hideharu Akiyo ...
    Volume 13 (2017) Pages 186-191
    Released: October 20, 2017
    JOURNALS FREE ACCESS

    The resolution dependency of simulated stratosphere-to-troposphere transport (STT), associated with mid-latitude closed cyclones at mid- and upper-troposphere in early spring around Japan, was investigated using the Nonhydrostatic ICosahedral Atmospheric Model (NICAM), with three horizontal resolutions (∼220, 56, and 14 km). We defined “STT-producing cyclone” as the developed mid-latitude cyclones that have isolated low pressure systems with closed contours at mid- and upper-troposphere, generated by the deepening of a trough. The STT-producing cyclone itself, with a large spatial scale, is well-simulated from three horizontal resolution experiments. As the horizontal resolution increased, the baroclinic zone on the rear side of the surface cold front became sharper along the southern areas of the upper low, bringing stratospheric dry air down to the troposphere. This comprises a sharp and deep intrusion of dry air into the troposphere, with increased dry air along the jet-axis. While the sufficient resolution for accurate estimation remains unclear, these results suggest that the minimum horizontal resolution for reproducing the sharp and deep intrusion from the stratosphere to the troposphere during the STT-producing cyclone events is approximately 14-56 km.

    View full abstract
    Download PDF (3675K)
  • Sang-Sam Lee, Eun-Hee Lee, Byung-Ju Sohn, Hee Choon Lee, Jeong Hoon Ch ...
    Volume 13 (2017) Pages 192-198
    Released: October 27, 2017
    JOURNALS FREE ACCESS

    A data assimilation (DA) system employing day- and nighttime aerosol optical thickness (AOT) was developed for the Asian Dust Aerosol Model 2 (ADAM2), using the optimal interpolation (OI) method. The DA system assimilated nighttime AOT for dust retrieved from MODIS infrared (IR) measurements with an artificial neural network (ANN) approach. An Asian dust case that occurred during 14-18 March 2009 was simulated using ADAM2. To examine the impact of the inclusion of nighttime AOT on forecasts of the data assimilation system, experiments were performed with different assimilation cycles (i.e., DA1: 24-hour cycle with daytime MODIS AOT only, DA2: 12-hour cycle with additional nighttime AOT). A control simulation was also performed without data assimilation (CTL). Forecasts were assessed using MODIS-derived AOT distributions as well as ground-based skyradiometer, PM10, and lidar observations. The model-estimated vertical distribution of the dust extinction coefficient was also compared with lidar measurements. Both experiments (DA1, DA2) were found to have improved forecasting, but DA2 outperformed DA1. Results suggest that the ANN-based nighttime AOT contributes more positively to the forecasting through better temporal coverage for data assimilation.

    View full abstract
    Download PDF (1751K)
  • Jiayu Zheng, Yanjie Li, Jianping Li, Jiaqing Xue, Yipeng Guo, Ting Liu ...
    Volume 13 (2017) Pages 199-204
    Released: November 07, 2017
    JOURNALS FREE ACCESS

    The relationship between Indo-Pacific convection oscillation (IPCO) and summer (June-August) surface air temperature in southern Asia (including India and Indochina) is investigated for the period of 1979-2013 using observational datasets and a theoretical linear baroclinic model. In the summers with the positive IPCO phase, when the convection over the western North Pacific (north Indian Ocean) is enhanced (suppressed), the Southeast Asian summer monsoon is enhanced and the southern Asia is cooler than usual, and vice versa. The “positive-negative-positive” air temperature advection anomalies by anomalous wind play an important role in the negative relationship between the IPCO and surface air temperature in southern Asia. It is also found that this negative correlation is greatly enhanced in El Niño-Southern Oscillation decay years.

    View full abstract
    Download PDF (1675K)
  • Atsushi Shimizu, Nobuo Sugimoto, Tomoaki Nishizawa, Yoshitaka Jin, Das ...
    Volume 13 (2017) Pages 205-208
    Released: November 11, 2017
    JOURNALS FREE ACCESS

    Dust extinction coefficients, a fundamental product of the Asian Dust and Aerosol Lidar Observation Network, were analyzed to evaluate climatological variations of Asian dust in Japan. Dust optical depth (vertically integrated dust extinction coefficients) from the network displayed peaks similar to those in the official Japan Meteorological Agency reports in spring, and in other seasons they were more responsive signals of moderate dust events. Between 2007 and 2016, dust optical depth decreased by 2.5% per year in Japan, and by 0.7% per year in Mongolia, a major source region of Asian dust. Relative to Mongolia, then, Japan has displayed a stronger negative trend in dust extinction coefficients, which is attributed to the meteorological field between continental Asia and Japan, including wind and rainfall during transportation. This negative trend of Asian dust in Japan was stronger in the middle troposphere (5-6 km altitude) than in the planetary boundary layer.

    View full abstract
    Download PDF (906K)
  • Naoaki Saito, Shuhei Maeda, Tosiyuki Nakaegawa, Yuhei Takaya, Yukiko I ...
    Volume 13 (2017) Pages 209-213
    Released: November 22, 2017
    JOURNALS FREE ACCESS

    The North Atlantic Oscillation (NAO) is the most dominant hemispheric variability affecting the winter climate. It is, however, difficult to predict the NAO on a seasonal time scale. Thus, a better understanding of the NAO is important for improving the accuracy of seasonal forecasts. We investigated the seasonal predictability of the NAO and the zonal mean fields of the stratosphere using hindcasts based on the operational seasonal prediction system of the Japan Meteorological Agency. We found that both the predictive skill and the potential predictability of the NAO index increased from late winter to early spring and that this seasonality relates to high predictability of the zonal mean geopotential height in the stratosphere and near the surface. Analysis of the convergence/divergence of the Eliassen–Palm flux indicates that the high predictability in the stratosphere in late winter results from the large signal of upward-propagating Rossby waves. The downward influence of the predictable signal from the stratosphere to the troposphere was also quantitatively estimated using the approach proposed by Ambaum and Hoskins (2002). The signal of the surface pressure estimated from that of stratospheric potential vorticity is roughly consistent with the actual signal, substantiating the stratospheric contribution to the near-surface seasonal predictability.

    View full abstract
    Download PDF (803K)
  • Masaru Inatsu, Hayato Kato, Yuta Katsuyama, Yasuaki Hiraoka, Ippei Ohb ...
    Volume 13 (2017) Pages 214-218
    Released: November 22, 2017
    JOURNALS FREE ACCESS

    This paper addresses a cyclone identification algorithm with the superlevel set filtration of the persistent homology together with the merge-tree reconstruction of data. Based on the information of peaks and saddles of the scaler field, the newly developed algorithm divides the analysis area into several homology classes, each of which satisfies the peak-to-saddle difference larger than a criterion that should be set in advance. Applied to the 850-hPa relative vorticity in the western North Pacific at 1200 UTC on 2 March 2013, 3 homology classes were found with the criterion of 100 × 10−6 s−1 and 17 homology classes were found with the criterion of 50 × 10−6 s−1. The merge-tree restructuring clarified the neighbour relation among homology classes. The result suggests that the weak criterion detected too much homology classes, some of which are small peaks inside of a single cyclone. The climatology feature density provides the Pacific storm track with the strict criterion. Finally, a possible way to extend toward cyclone tracking with the persistent homology is discussed.

    View full abstract
    Download PDF (2627K)
  • Akihiko Murata, Hidetaka Sasaki, Hiroaki Kawase, Masaya Nosaka, Toshin ...
    Volume 13 (2017) Pages 219-223
    Released: November 29, 2017
    JOURNALS FREE ACCESS

    This study investigates future changes in temperature and precipitation extremes over Japan by the end of the 21st century using ensemble simulations under the Representative Concentration Pathway 8.5 scenario projected by a convection-permitting regional climate model with a grid spacing of 2 km.

    For all ensemble members, the projected future climate indicates robust increases in the 99th percentile of hourly temperature over all regions of Japan. In contrast, the 99th percentile of hourly precipitation increases over the northern and part of the eastern regions of Japan, particularly on the Sea of Japan side of northern Japan in July. A couple of local-scale areas in Hokkaido are identified as a cause of significant increases in rainfall over this region.

    Increases in horizontal convergence near the surface and in the middle troposphere are responsible for increased heavy precipitation over a local-scale area of Hokkaido in July. The enhanced convergence near the surface can be attributed to strengthened westerly wind, whereas that in the middle layer can be explained by vertically unstable layers.

    View full abstract
    Download PDF (1800K)
  • Daisuke Goto, Shinji Morimoto, Shuji Aoki, Satoshi Sugawara, Shigeyuki ...
    Volume 13 (2017) Pages 224-229
    Released: December 06, 2017
    JOURNALS FREE ACCESS

    Stratospheric air sampling using balloon-borne cryogenic air samplers was conducted over Syowa Station, Antarctica in four austral summers between 1998 and 2013. The CH4 and N2O mole fractions decreased with increasing altitude due to chemical reactions and photodissociation in the stratosphere, and a compact positive correlation between CH4 and N2O was found in their vertical profiles. The vertical profiles of CO2 and SF6 mole fractions showed high values in the lower stratosphere, decreasing gradually with altitude, and then becoming almost constant at altitudes above 18 km. Stratospheric CO2 and SF6 above 18km over Antarctica increased secularly at the respective average rates of 1.82 ± 0.31 ppm yr−1 and 0.26 ± 0.01 ppt yr−1 during the study period. The CO2 and SF6 mole fractions increased in the Antarctic stratosphere, but were delayed 4.5 ± 0.5 and 5.6 ± 0.2 years, respectively, compared to the tropical troposphere. The secular increase in stratospheric CH4 was also detected by classifying the measured mole fractions in terms of the N2O depletion in the stratosphere.

    View full abstract
    Download PDF (1192K)
  • Shigeyuki Ishidoya, Kazuhiro Tsuboi, Shohei Murayama, Hidekazu Matsued ...
    Volume 13 (2017) Pages 230-234
    Released: December 13, 2017
    JOURNALS FREE ACCESS

    A continuous measuring system for atmospheric O2/N2 ratio was developed employing a paramagnetic oxygen analyzer. Sample air is allowed to flow through a water trap cooled to −80°C, and is introduced into the analyzer at a flow rate of 100 mL min−1 by stabilizing the pressure to an order of 10−1 Pa. The analytical reproducibility of the O2/N2 ratio achieved by the system is about 5 and 3 per meg for 2 and 30 minutes average values, respectively. The O2/N2 ratio values obtained by the system are in good agreement with the values obtained by our traditional system using a mass spectrometer. Using our new system, we started measuring the atmospheric O2/N2 ratio at Minamitorishima, Japan since December, 2015. Some preliminary results show clearly the O2/N2 day-to-day and seasonal variations that are in the opposite phase with the CO2 concentration.

    View full abstract
    Download PDF (1801K)
    • |<
    • <
    • 1
    • >
    • >|
feedback
Top