詳細検索結果
以下の条件での結果を表示する: 検索条件を変更
クエリ検索: "危難の海"
6件中 1-6の結果を表示しています
  • 石山 謙
    日本惑星科学会誌遊星人
    2018年 27 巻 3 号 264-266
    発行日: 2018/09/25
    公開日: 2018/12/21
    ジャーナル フリー
  • 中村 良介, 山本 聡, 松永 恒雄, 小川 佳子, 横田 康宏, 石原 吉明, 廣井 孝弘
    日本惑星科学会誌遊星人
    2014年 23 巻 1 号 15-24
    発行日: 2014/03/25
    公開日: 2017/08/25
    ジャーナル フリー
    我々は月探査機「かぐや」に搭載されたスペクトルプロファイラ(SP)データの全量解析を行い,月表面に露出しているカンラン石・低カルシウム輝石に富む岩相の全球分布を調べた.その結果,(1)カンラン石はモスクワの海・
    危難の海
    といった地殻が薄く比較的小さい衝突盆地周辺に(2)低カルシウム輝石は月の三大衝突盆地,すなわち南極=エイトケン盆地・雨の海・プロセラルム盆地の周囲に,それぞれ局在することが明らかとなった.表層の斜長岩地殻が完全に吹き飛ばされた衝突盆地の内部では,その下にあるマントルが大規模に溶融して「マグマの海」が形成される.原始地球への巨大衝突によって形成された月は,当初数百km以上の厚さのマグマオーシャン(マグマの大洋)によって覆われていた.「マグマの海」は,このマグマオーシャンのミニチュアであり,SPが捉えたカンラン石・低カルシウム輝石の分布は,その分別結晶化過程を反映していると考えられる.今後「かぐや」分光データの詳細な解析をすすめ,「マグマの海」の組成およびその分化過程を読み解いていけば,同じ手法を用いてマグマオーシャンの分化過程や月の内部構造・バルク組成にも強い制約を加えることができるだろう.同様に月の「マグマの海」の研究は,ほぼ同規模の小惑星ベスタ上のマグマオーシャンや,月よりもさらに規模の大きい地球のマグマオーシャンの分化過程についても,新たな知見をもたらすことが期待される.
  • 佐々木 晶
    日本惑星科学会誌遊星人
    2017年 26 巻 3 号 108-115
    発行日: 2017/09/25
    公開日: 2017/11/21
    ジャーナル フリー
  • 入山 淳, 小林 泰陸, 山村 正明
    地球科学
    1975年 29 巻 5 号 238-246
    発行日: 1975/09/20
    公開日: 2017/07/26
    ジャーナル オープンアクセス
    Radiometric ages have been determined over the samples of Apollo 11, 12, 14, 15, 16 and 17 and Luna 16 and 20 rocks and soils. From the agedating data of the lunar materials it is attempted to initiate a framework for lunar chronology. The basalts from mare regions have not undergone shock metamorphism and brecciation caused by the impact events. The ages of mare basalts from Apollo 11, 12, 14, 15, and 17 and Luna 16 date the period of flooding by basaltic lava on mare basins. The highland samples from Apollo 14, 15, 16, and 17 and Luna 20 abound with breccias-rock fragments and soils that have adhered because of the heat and pressure of impacts. Ejecta thrown up by the mare basin impacts formed the highlands. The highland rock samples (anorthositic gabbro composition but breccia texture) give a date for the cataclysm of mare basin excavation and highland formation. The ages for the mare volcanism are: Oceanus Procellarum 3.16-3.36 b.y.; Mare Imbrium 3.28-3.44 b.y.; Mare Fecunditatis 3.4-3.5 b.y.; Mare Tranquillitatis 3.56-3.83 b.y.; Mare Serenitatis 3.71 -3.79 b.y.; pre-Mare Imbrium 3.95-4.0 b.y. For the highland formation: Cayley Plains 〜3.84 b.y.: Fra Mauro Hills 〜3.88 b.y.; Apennine Mountains 〜3.88 b.y.; Apollonius Mountains 〜3.90 b.y. Descartes Mountains 〜3.93 b.y.; Taurus-Littrow Highlands 〜3.98 b.y. For the impact mare basin formation: Orientale Basin 〜3.84 b.y.; Imbrium Basin 〜3.88 b.y.; Crisium Basin 〜3.90 b.y.; Nectaris Basin 〜3.93 b.y.; Serenitatis Basin 〜3.98 b.y. The moon originated about 4.6 b.y. ago. The outermost layers of the moon must have been very hot at that time, by virtus of conservation of accretional energy, as inferred from the wholerock and soil Rb-Sr model ages of 4.6 b.y. Cooling within the outer layers commences after the period of intensive rapid heating. The flooding of the mare basins with basaltic lavas spans a time interval between 3.16 and 4.0 b.y. ago. This shows a second heating of the moon due to long-lived radioactive energy. The highlands are built up by the ejecta from the large (basin) impacts, in especial, from Orientale, Imbrium, Crisium, Nectaris, and Serenitatis events. Ages of highland samples cluster in the interval 3.84 to 4.05 b.y. and indicate that most of the major lunar basins formed in this period by a cataclysmic bombardment of the surface by many large bodies. The failure to discover lunar volcanic rocks which were formed about 4.0 to 4.6 b.y. ago, and younger than those about 3.16 b.y. ago is an important constraint on the lunar thermal history. The moon has been slowly dying since 3.16 b.y. ago, in contrast to the earth, which is, and may be, as active as ever. This results from the fact that the moon is a small body in comparison with the earth. The lunar chronology in this study is consistent with the theoretical thermal calculation (IRIYAMA and SHIMAZU, 1967; REYNOLDS et al., 1972).
  • 中村 良介, 山本 聡, 石原 吉明, 松永 恒雄
    地球化学
    2014年 48 巻 4 号 245-263
    発行日: 2014/12/25
    公開日: 2015/01/06
    ジャーナル フリー
    In order to decipher complex geological history of a planetary body, it is essential to integrate the global remote sensing data and laboratory analysis of the returned sample. Earth's Moon is the best example to demonstrate this synergy because we have both a large collection of lunar samples and tremendous amount of remote sensing data obtained by recent lunar exploration missions. Reanalysis of archived Apollo samples revealed that the Moon has preserved water in the interior, while the traditional scenario of the Earth-Moon system formation, known as “Giant Impact,” leads to complete loss of volatile components. The global data sets provided by SELENE/Kaguya suggest that a leftover planetesimal of several hundred kilometers in size could have delivered water to the Moon just after solidification of the highland crust from magma ocean. Studies on the volatile inventory of the Moon will help us to understand the formation of Earth's ocean, atmosphere and life.
  • 荒木 博志, 田澤 誠一, 野田 寛大, 石原 吉明, Goossens Sander, 佐々木 晶, 河野 宣之, 神谷 泉
    測地学会誌
    2009年 55 巻 2 号 281-290
    発行日: 2009年
    公開日: 2012/03/28
    ジャーナル フリー
    New global topographic model of the Moon with a spatial resolution less than 0.5 degrees (its angular distance is about 15 km) has been derived from the laser altimeter (LALT: Laser ALTimeter) on the Japanese lunar explorer KAGUYA (SELENE). The model reveals more detailed lunar topography than the previous global one (ULCN2005) for scales less than a few hundred kilometers. Spherical harmonic analysis of the new lunar topography shows the Moon has rougher topography than was in the previous models. Global correlation between this topographic model (STM359_grid-02) and the latest gravity model (SGM90d) and their admittance spectrum give fundamental clues for compensation of lunar topography and its evolutional restrictions. Topographic features for scales more than about 180 km (6 degrees in angular distance) are supported partly by the isostatic compensation, while other features are done by the crustal rigidity.
feedback
Top