日本建築学会環境系論文集
Online ISSN : 1881-817X
Print ISSN : 1348-0685
ISSN-L : 1348-0685
壁対面経路に対する換気塔利用の有効性に関する評価
密集市街地における換気塔を利用した通風・換気促進に関する研究 第1報
滝澤 正玄倉渕 隆鳴海 大典野中 俊宏鷹野 亮
著者情報
キーワード: 通風, 換気量, CFD, 風洞実験, 換気塔
ジャーナル フリー

2017 年 82 巻 731 号 p. 43-50

詳細
抄録

 1. Introduction
 Even if it is difficult to take advantage of natural ventilation due to ambient conditions, it is beneficial to carry out designing which improves ventilation performances. Several design techniques aimed at promoting ventilation have been available, but have not gained in popularity because they often cause degradation and leak in the roof. In addition, in densely urban areas, it is difficult to predict the prevailing wind direction, and there are possibilities that a wind direction is changed due to rebuilding of the surrounding buildings. Furthermore, due to very narrow building intervals in the residential area of the urban areas, ensuring ventilation amount through the existing wall face-to-face is not easy. This paper focuses on the residential ventilation tower as a measure to address these problems. It aims to realize securing ventilation, which is often difficult through the existing wall window path, as a construction building frame without any use of electricity or moving parts.
 2. Method
 In order to quantitatively evaluate the performance of the ventilation tower, a calculation of ventilation tower size which demonstrates an equivalent airflow resistance value as through the existing wall face openings was carried out using a CFD. In the procedure, a virtual chamber to avoid effects of external wind and inlet conditions into the room was provided on all of the openings, then the flow rate count, α, in the ventilation tower inlet and each opening was calculated. The area of the ventilation tower entrance and ventilation tower opening area, which shows an equivalent ventilation resistance when using α, were calculated and set as Ventilation tower 1 (VT1) and Ventilation tower 2 (VT2) for evaluation in this study.
 3. Result
 The ventilation tower parts of VT1 and VT2 are attached to the roof of the house model, and wind tunnel experiments were carried out. The chamber pressure, the amount of ventilation and a rooftop velocity were measured. The results of the experiment confirmed that the route using the ventilation tower holds about 70% of the ventilation capacity of the existing wall face route without any dependency on the wall opening position and wind direction.
 4. Conclusions
 By creating a mesh for analysis which reproduced the housing model and comparing it with the obtained wind pressure coefficients and amount of ventilation in the experiment, the accuracy of CFD calculation was confirmed. Since the actual phenomena reproducibility of CFD with accuracy was confirmed, we went on to a case study with conditions with buildings in the surrounding area. No significant differences were noted in the case of assumed suburbs with 30% gross building coverage, whereas it was confirmed that the ventilation tower to function effectively in the densely built areas with assumed gross building coverage of 50% and extremely narrow adjacent building spacing conditions.

著者関連情報
© 2017 日本建築学会
前の記事 次の記事
feedback
Top