日本建築学会構造系論文集
Online ISSN : 1881-8153
Print ISSN : 1340-4202
ISSN-L : 1340-4202
海岸域で発生する飛来塩分の予測における機械学習の適用
崎原 康平滝 勇太中村 文則請舛 慧
著者情報
ジャーナル フリー

2024 年 89 巻 822 号 p. 818-829

詳細
抄録

In this study, a machine learning approach using the Isolation Forest, one of the anomaly detection machine learning algorithms, was proposed to exclude anomalous values from the training data. In addition, the influences of the modified training data on the prediction of airborne chloride were investigated. Therefore, it was found that combining statistical processing with the Isolation Forest improves the accuracy of predicting airborne chloride. Furthermore, it was revealed that the most contributing feature importance to the prediction of airborne chloride is the significant wave height.

著者関連情報
© 2024, 日本建築学会
前の記事 次の記事
feedback
Top