日本建築学会構造系論文集
Online ISSN : 1881-8153
Print ISSN : 1340-4202
ISSN-L : 1340-4202
機械学習によるRC造建物の累積劣化を考慮したダウンタイム影響因子分析
元部 太陽高橋 典之
著者情報
ジャーナル フリー

2026 年 91 巻 839 号 p. 155-161

詳細
抄録

While current seismic design primarily aims to ensure life safety during major earthquakes, growing societal demand has shifted the focus toward resilience performance, emphasizing early functional recovery and reduced downtime. A critical issue is to evaluate the impact of both the delay time before repair initiation and the repair time of structural and non-structural components on downtime. This study investigates how cumulative deterioration caused by repeated seismic events during the service life of RC buildings influences downtime after a major earthquake. Furthermore, a machine learning-based importance analysis is conducted to identify key factors influencing downtime, supporting effective recovery strategy development.

著者関連情報
© 2026, 日本建築学会
前の記事 次の記事
feedback
Top