2020 Volume 36 Issue 12 Pages 1439-1445
An efficient methodology has been developed to determine the tricyclazole residue in matrix based on surface-enhanced Raman scattering (SERS) coupled with dispersible matrix solid-phase extraction. After pretreatment and test conditions optimization, peaks at 1373 and 1317 cm−1 in the SERS spectrum were respectively selected as quantitative peaks for rice and Brassica campestris L. ssp. chinensis var. utilis Tsen, respectively. The matrix standard curve-external standard method was used to quantitatively conduct a statistical analysis. The correlation between the quantitative peak response and tricyclazole concentration showed a significant linear relationship with a correlation coefficient of R2 > 0.99. The lowest spiked concentration was determined to be the quantitative limit that was below the maximum residue limits of tricyclazole. This study provides a sensitive, stable and rapid approach for the analysis of tricyclazole in above matrix via SERS, and it will be a useful complement to the quantitative analysis of tricyclazole in a complex matrix.