Analytical Sciences
Online ISSN : 1348-2246
Print ISSN : 0910-6340
ISSN-L : 0910-6340
Original Papers
MALDI Mass Spectrometry of Small Molecules Using Nanometer-sized Clay
Jiawei XUJunko N. KONDOTatsuya FUJINO
著者情報
キーワード: Allophane, MALDI, nano, zeolite
ジャーナル フリー

2020 年 36 巻 2 号 p. 177-181

詳細
抄録

Nanometer-sized clay, allophane, was used as the matrix for matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) and applied to the ionization of small molecules. First, the laser desorption ionization mass spectrum of cation-exchanged allophane was measured, and it was found that the cation exchange proceeded smoothly with increasing atomic number of alkali metals in the periodic table. This phenomenon was explained by considering the size of the counter anion on the allophane surface. Then, fructose was measured as the analyte using each alkali-cation-exchanged allophane as the matrix. Contrary to the measurements using allophane itself, the peak intensity of fructose decreased with increasing atomic number of alkali metals in the periodic table. This phenomenon was clarified by considering the stability of alkali cation in the presence of a surface anion, the desorption energy, and the solvation enthalpy of each alkali cation. The applicability of allophane to high molecular weight compounds was also confirmed by measuring cyclodextrin, angiotensin II, and insulin. Finally, a combination of allophane and zeolite was examined by assuming proton relay among allophane, zeolite, and analyte. As a result of proton supply from zeolite to allophane, the peak intensity of the proton sponge (1,8-bis(dimethylamino)naphthalene) was enhanced by almost 2.2 times.

Fullsize Image
著者関連情報
© 2020 by The Japan Society for Analytical Chemistry
前の記事 次の記事
feedback
Top