Abstract
The 16-kDa rice allergen, RA17, belonging to the α-amylase/trypsin inhibitor family was isolated from rice seed and structurally characterized by identifying cystine-containing peptides and predicting the secondary structure and hydrophobic regions. Eight peptides, which constitute three sets of cystine-containing peptides, were purified by HPLC from a thermolytic digest of RA17 and identified by their amino acid sequence and composition, indicating five intramolecular disulfide bridges: Cys34-Cys94, Cys26-(Cys50 or Cys51)-Cys110 and Cys12-(Cys62 or Cys64)-Cys122. Analyses of the CD spectrum and the Chou-Fasman prediction suggested that RA17 had some helical- and sheet-structure regions. Based on these experimental and predicted data, RA17 is proposed to be a globular molecule with a small hydrophobic core having folding restricted by five intramolecular disulfide bridges.