Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Analytical Chemistry Regular Paper
Generation of Free Radicals during the Death of Saccharomyces cerevisiae Caused by Lipid Hydroperoxide
Hitoshi AOSHIMAKiyoshi KADOYAHitoshi TANIGUCHITakumi SATOHHiroshi HATANAKA
Author information
JOURNAL FREE ACCESS

1999 Volume 63 Issue 6 Pages 1025-1031

Details
Abstract

  The exposure of Saccharomyces cerevisiae cells to 13-L-hydroperoxylinoleic acid (LOOH) caused their death, the degree of which was dependent on the growth phase of the cells. Pre-application of ethanol, hydrogen peroxide (H2O2) and LOOH to S. cerevisiae cells reduced the effect of LOOH on the cells, showing the transient cross adaptation to LOOH. Antioxidants such as N,N′,-diphenyl-p-phenylenediamine (DPPD), melatonin and vitamin E, and inhibitors of permeability transition of mitochondria, cyclosporin A and trifluoperazine, inhibited the LOOH-triggered cell death, while an inhibitor of glutathione synthetase, buthionine sulfoximine (BSO), enhanced the cell death by LOOH. Reactive oxygen species (ROS) were detected by flow cytometry, using the ROS-specific fluorescent indicator. A ferric iron chelator, deferoxamine, inhibited the LOOH-triggered cell death, and peroxyl radicals (LOO•) were detected by a spin trapping method. These reactive radicals possibly induced the death of S. cerevisiae cells. However, the DNA fragmentation characteristic of apoptosis was not observed in S. cerevisiae cells after exposure to LOOH, staurosporine, dexamethasone or etoposide, which have been reported to cause apoptosis in mammalian cells.

Content from these authors

This article cannot obtain the latest cited-by information.

© 1999 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top